Criteria

Text:
Display:

Results

Viewing 151 to 180 of 4689
2016-06-15
Technical Paper
2016-01-1803
Hannes Frank, Claus-Dieter Munz
Avoiding narrowband components in the acoustic spectrum is one of the most critical objectives in the automotive aeroacoustic optimization process. The underlying physical mechanisms are not completely understood. In a preceding numerical and experimental investigation, we performed large eddy simulations of an early-development stage realistic side-view mirror, where tonal noise was captured and the principle mechanisms were identified. In this contribution, we present simulations on a simplified two-dimensional geometry that is based on these findings. It is shown that the basic flow topology relevant for tonal noise generation on the original side-view mirror as well as the tonal noise source is reproduced in the 2D case. Furthermore, we present comparisons with measurements and the necessity and influence of a splitter plate downstream of the 2D body to avoid large scale vortex shedding.
2016-06-15
Journal Article
2016-01-1801
Jonathan Vaudelle, Florian Godard, Florian Odelot, Anne Sanon
Abstract Acoustic comfort inside the vehicle is required whenever a wiper system is in function: front wiper motor noise is of great influence on the global comfort and its perception inside the car is 100% due to transmission of vibrations through wiper system fixation points on the vehicle. As any active source, both car manufacturer and system supplier need to be involved, at early stages of project development, in order to master the vibroacoustic integration of the system into the vehicle. This paper presents an experimental methodology dedicated to the front wiper system that offers the possibility to estimate the acoustic comfort inside the vehicle during project deployment phase, when modifications can still be proposed. Based on the XP-R-19701 standard, the procedure allows to measure, on a bench, the dynamic forces transmitted via the fixation points and details how to transpose them to the vehicle, taking into account the different specificities of the wiper system.
2016-06-15
Journal Article
2016-01-1809
Alexander Schell, Vincent Cotoni
Abstract Prediction of flow induced noise in the interior of a passenger car requires accurate representations of both fluctuating surface pressures across the exterior of the vehicle and efficient models of the vibro-acoustic transmission of these surface pressures to the driver’s ear. In this paper, aeroacoustic and vibro-acoustic methods are combined in order to perform an aero-vibro-acoustic analysis of a Mercedes-Benz A-class. The exterior aero-acoustic method consists of a time domain incompressible Detached Eddy Simulation (DES) and an acoustic wave equation. The method is extended in this paper to account for convection effects when modelling the exterior sound propagation. The interior vibro-acoustic model consists of a frequency domain Finite Element (FE) model of the side glass combined with a generalized Statistical Energy Analysis (SEA) model of the interior cabin.
2016-06-15
Technical Paper
2016-01-1849
Arnaud Caillet, Luca Alimonti, Anton Golota
Abstract The need for the industry to simulate and optimize the acoustic trim parts has increased during the last decade. There are many approaches to integrate the effect of an acoustic trim in a finite element model. These approaches can be very simple and empirical like the classical non-structural mass (NSM) combined to a high acoustic damping value in the receiver cavity to much more detailed and complex approach like the Poro-Elastic Materials (PEM) method using the Biot parameters. The objective of this paper is to identify which approach is the most appropriate in given situations. This article will first make a review of the theory behind the different methods (NSM, Impedances, Transfer Matrix Method, PEM). Each of them will be investigated for the different typical trim families used in the automotive industry: absorber, spring/mass, spring/mass/absorber.
2016-06-15
Technical Paper
2016-01-1806
Sumon Sinha, Farokh Kavarana, Dan Williams, Kazuya Asao
Abstract A high performance rigid airfoil profile sunroof wind deflector has been developed for high speed freeway driving with the sunroof open. This deflector is clearly superior to the conventional bar type deflector and less expensive compared to tall flexible fabric mesh deflectors applied on high end vehicles today. It provides superior speech intelligibility under high speed driving with sunroof open. The criterion for designing this deflector was to get the highest airspeed possible to span the sunroof opening under all conditions. The customized shape also utilizes flow unsteadiness, including those at the onset of buffeting, in order to condition the shear layer. The airfoil profiled deflector yielded superior mid and high frequency acoustic performance with acceptable low frequency performance. A shorter airfoil deflector was sufficient to keep the external airflow from entering the forward tilted sunroof opening on a mid-size SUV under test.
2016-04-05
Technical Paper
2016-01-0532
Masaya Miura, Koichiro Hayashi, Kenichiro Yoshimoto, Natsuhiko Katahira
Abstract Weight reduction for a fuel cell vehicle (FCV) is important to contribute a long driving range. One approach to reduce vehicle weight involves using a carbon fiber reinforced plastic (CFRP) which has a high specific strength and stiffness. However, a conventional thermoset CFRP requires a long chemical reaction time and it is not easy to introduce into mass production vehicles. In this study, a new compression-moldable thermoplastic CFRP material for mass production body structural parts was developed and applied to the stack frame of the Toyota Mirai.
2016-04-05
Technical Paper
2016-01-0530
Jon Goering, Harun Bayraktar
Abstract Composites reinforced with 3D woven fiber preforms are known to display improved through thickness performance when tested using methods such as the ASTM D6415 curved beam protocol. The presence of reinforcing fiber in the through-thickness direction eliminates delamination as a mode of failure and allows the composite to continue to carry increasing loads well beyond first crack initiation. We propose that this characteristic of 3D woven composites may be exploited for applications such as automotive crash structures, which are required to dissipate large amounts of energy during an impact event. The rate dependent nature of these materials, however, is not well understood. An empirical study was conducted to provide an initial understanding of the dynamic behavior of 3D composites.
2016-04-05
Technical Paper
2016-01-0531
Pulkit Batra, Arpit Bansal, V Jeganathan ArulMoni
Abstract Friction stir processing (FSP) is a method of changing the properties of metal through intense, localized plastic deformation. This deformation is produced by forcibly inserting a non-consumable tool into a workpiece, and revolving the tool in a stirring motion as it is pushed laterally through the workpiece. It comprises of a rotating tool with pin and shoulder which are inserted into a single piece of material and traversed along the desired path to cover the region of interest. Friction between the shoulder and work piece results in localized heating which raises the temperature of the material to the range where it is plastically deformed. During this process, severe plastic deformation occurs and due to thermal exposure of material, it results in a significant evolution in the local microstructure. Carbon nanotubes were dispersed into Al matrix by multipass FSP to fabricate Al6082 T0/Fe-MWCNT.
2016-04-05
Journal Article
2016-01-0539
Yuko Kajiyama, Toshikazu Obata, Tsuyoshi Sugimoto, Masahiro Nakamura, Motohide Mori
Abstract The dissolution and exfoliation of chromium plating specific to Russia was studied. Investigation and analysis of organic compounds in Russian soil revealed contents of highly concentrated fulvic acid. Additionally, it was found that fulvic acid, together with CaCl2 (a deicing agent), causes chromium plating corrosion. The fulvic acid generates a compound that prevents reformation of a passivation film and deteriorates the sacrificial corrosion effectiveness of nickel.
2016-04-05
Technical Paper
2016-01-1612
Francesco Mariani, Francesco Risi, Nicola Bartolini, Francesco Castellani, Lorenzo Scappaticci
Abstract Aerodynamics is one of the most important factors in the development of racing cars. At the speeds of formula cars reach the formula cars, the driver's neck can be subjected to stresses resulting from the aerodynamic forces acting on the helmet; developing an aerodynamic project that takes into account the comfort of the driver without affecting performance is certainly considered a challenging activity. The aim of the present work is to develop a low-pitching-momenthelmet for formula racing cars optimizing the shape and location, applying some aerodynamic appendices. This goal is pursued by adopting an approach based on both experimental and numerical activities. First, the aerodynamic configuration of an existing helmet was examined; through a testing campaign in the wind tunnel facilities of Perugia University, pressures acting on the helmet were scanned at various speeds and data about aerodynamic drag were collected.
2016-04-05
Journal Article
2016-01-1595
Haibo Wu, Jiangbin Zhou, Qian Chen, Gongwen Liu, Chaoqun Qian
Abstract In this paper we present the work which was done at Shanghai-VW for using computational aero-acoustic (CAA) simulation in the vehicle development process to assess and improve the buffeting behavior of a vehicle when the rear side window is open. In the first step, a methodology was established and validated against wind tunnel tests using a Sedan. The methodology consists of a calibration of the CAA model to represent the properties of the cabin interior of the real car in terms of damping, wall compliance and leakage followed by CAA simulations of the full vehicle at different wind speeds to obtain the transient flow field around the exterior shape and inside the passenger compartment. The interior noise spectra are directly calculated from the transient pressure inside the cabin.
2016-04-05
Technical Paper
2016-01-1541
Zuolong Wei, Hamid Reza Karimi, Kjell Gunnar Robbersmyr
Abstract The analysis of the vehicle crash performance is of great meaning in the vehicle design process. Due to the complexity of vehicle structures and uncertainty of crashes, the analysis of vehicle crashworthiness is generally depending on the researchers' experiences. In this paper, different deformation modes of energy absorption components are studied. More specifically, the bumper, crash box, the front longitudinal beam and the engine/firewall have different frequency characteristics in the deformation process. According to these characteristics, it is possible to identify the performance of each component in the crash process of assembled structures. To achieve this goal, the crash response of the passenger cabin is decomposed by the time-frequency transformation. Different frequency components exist mainly in a specified period of the crash process.
2016-04-05
Technical Paper
2016-01-1420
Shinichi Kojima, Shigeyoshi Hiratsuka, Nobuyuki Shiraki, Kazunori Higuchi, Toshihiko Tsukada, Keiichi Shimaoka, Kazuya Asaoka, Sho Masuda, Kazuhiko Nakashima
Abstract This study aims at the development of a projection pattern that is capable of shortening the time required by a driver to perceive a pedestrian at night when a vehicle’s high beams are utilized. Our approach is based on the spatio-temporal frequency characteristics of human vision. Visual contrast sensitivity is dependent on spatiotemporal frequency, and maximum contrast sensitivity frequency varies depending on environmental luminance. Conventionally, there are several applications that utilize the spatio-temporal frequency characteristics of human vision. For example, the National Television System Committee (NTSC) television format takes into consideration low-sensitivity visual characteristics. In contrast, our approach utilizes high-sensitivity visual characteristics based on the assumption that the higher contrast sensitivity of spatio-temporal frequencies will correlate more effectively with shorter perception times.
2016-04-05
Technical Paper
2016-01-1415
William T. Neale, James Marr, David Hessel
Abstract This paper presents a methodology for generating photo realistic computer simulation environments of nighttime driving scenarios by combining nighttime photography and videography with video tracking [1] and projection mapping [2] technologies. Nighttime driving environments contain complex lighting conditions such as forward and signal lighting systems of vehicles, street lighting, and retro reflective markers and signage. The high dynamic range of nighttime lighting conditions make modeling of these systems difficult to render realistically through computer generated techniques alone. Photography and video, especially when using high dynamic range imaging, can produce realistic representations of the lighting environments. But because the video is only two dimensional, and lacks the flexibility of a three dimensional computer generated environment, the scenarios that can be represented are limited to the specific scenario recorded with video.
2016-04-05
Technical Paper
2016-01-1417
Toshinao Fukui, Kazuhiko Nakamoto, Hiroyuki Satake
Abstract The use of a head-up display (HUD) system has become popular recently, as it can provide feedback information at a position easily seen by the driver. However, the outline of the HUD bezel often reflects on the windshield of a HUD equipped vehicle. This phenomenon occurs when the sun is at a high position and reflects off the top of the instrument panel and the front view is dark. For this reason, it can occur when driving on asphalt paved roads, causing annoyance to the driver. Under fixed environmental conditions, the vehicle based factors that influence the annoyance caused by reflected boundary lines are the position of the reflection, line thickness, and the contrast of the reflected boundary line. These can be represented by the conspicuity of a striped pattern (contrast sensitivity function). In previous research in 1991, M. S. Banks et al. studied a contrast sensitivity function that included the factors stated above.
2016-04-05
Technical Paper
2016-01-1454
Libo Dong, Stanley Chien, Jiang-Yu Zheng, Yaobin Chen, Rini Sherony, Hiroyuki Takahashi
Abstract Pedestrian Automatic Emergency Braking (PAEB) for helping avoiding/mitigating pedestrian crashes has been equipped on some passenger vehicles. Since approximately 70% pedestrian crashes occur in dark conditions, one of the important components in the PAEB evaluation is the development of standard testing at night. The test facility should include representative low-illuminance environment to enable the examination of the sensing and control functions of different PAEB systems. The goal of this research is to characterize and model light source distributions and variations in the low-illuminance environment and determine possible ways to reconstruct such an environment for PAEB evaluation. This paper describes a general method to collect light sources and illuminance information by processing large amount of potential collision locations at night from naturalistic driving video data.
2016-04-05
Technical Paper
2016-01-1510
Chinmoy Pal, Tomosaburo Okabe, Kulothungan Vimalathithan, Jeyabharath Manoharan, Pratapnaidu Vallabhaneni, Munenori Shinada, Kazuto Sato
Abstract Many active safety systems are being developed with the intent of protecting pedestrians namely; pedestrian airbags, active hood, active emergency braking (AEB), etc. Effectiveness of such protection system relies on the efficiency of the sensing systems. The pop-uphood system was developed to help reduce pedestrian head injuries. A pop-up system is expected to make full deployment of the hood before the pedestrian’s head could hit the hood. The system should have the capability to detect most road users ranging from a six year old (6YO) child to a large male. To test the sensing system, an impactor model (PDI-2) was developed. Sensor response varies for vehicles with different front end profile dimensions.
2016-04-05
Technical Paper
2016-01-1508
Gernot Pauer, Michal Kriska, Andreas Hirzer
Abstract Active bonnet safety systems are implemented into vehicles, to fulfill pedestrian head impact requirements despite little available deformation space. For such systems it is necessary to consider a variety of aspects already from the very beginning of the vehicle design process and the functionality of the whole system needs to be continually cross-checked throughout the whole design process. Many of these aspects are already supported by finite element (FE) methods from vehicle manufacturers and in this paper it is shown, how the last missing links within the development process, the optimization of pedestrian detection sensor signals can also be efficiently supported by FE simulation. The modeling and validation of a pressure tube based sensor system and so called “misuse objects” are demonstrated.
2016-04-05
Technical Paper
2016-01-1520
Gunti R. Srinivas, Anindya Deb, Clifford C. Chou
Abstract The present work is concerned with the objective of design optimization of an automotive front end structure meeting both occupant and pedestrian safety requirements. The main goal adopted here is minimizing the mass of the front end structure meeting the safety requirements without sacrificing the performance targets. The front end structure should be sufficiently stiff to protect the occupant by absorbing the impact energy generated during a high speed frontal collision and at the same time it should not induce unduly high impact loads during a low speed pedestrian collision. These two requirements are potentially in conflict with each other; however, there may exist an optimum design solution, in terms of mass of front end structure, that meets both the requirements.
2016-04-05
Technical Paper
2016-01-1523
Libo Cao, Changhai Yao, Hequan Wu
Abstract The traditional deterministic optimal design is mostly based on meeting regulatory requirements specified in impact standards, without taking the randomness of the impact velocity and angle at the real world situation into consideration. This often leads to the optimization results that converge to the boundary constraints, thus cannot meet the reliability requirements of the product design. Structure members of B-pillar (e.g. inner panel, outer panel, and the reinforcing plate) play a major role in the side impact safety performance. This paper dealt with optimization of B-pillar by considering its dimensions and materials as the design variables, and the impact velocity and angle from real-world traffic accident conditions as the random variable inputs. Using a combination of design of experiment, response surface models, reliability theory and the reliability of design optimization method, a B-pillar was constructed based on the product quality engineering.
2016-04-05
Technical Paper
2016-01-1532
Kyoungtaek Kwak, Seungwoo Seo, Randi Potekin, Antoine Blanchard, Alexander Vakakis, Donald McFarland, Lawrence Bergman
Abstract The purpose of this study is to develop a dynamic model that can accurately predict the motion of the door handle and counterweight during side impact crash tests. The door locking system, mainly composed of the door outside handle and door latch, is theoretically modeled, and it is assumed that the door outer panel can rotate and translate in all three directions during a side impact crash. Additionally, the numerical results are compared with real crash video footage, and satisfactory qualitative agreement is found. Finally, the simplified test rig that efficiently reflects the real crash test is introduced, and its operation is analyzed.
2016-04-05
Technical Paper
2016-01-0276
Mahalingesh Burkul, Hemant Bhatkar, Mahesh Badireddy, Narayanan Vijayakumar
Abstract In an automotive product development environment, identifying the premature structural failures is one of the important tasks for Body-In-White (BIW), sub-assemblies and components. The integrated car body structure i.e. monocoque structure, is widely used in passenger cars and SUVs. This structure is subjected to bending and torsional vibrations, due to dynamic loads. Normally the stresses due to bending are relatively small compared to stresses due to torsion in Body-In-White under actual road conditions [1]. This paper focuses on evaluating the life of Body-In-White structures subjected to torsional loading. An accelerated test method was evolved for identifying failure modes of monocoque BIW by applying torsion fatigue. The observation of the crack generation and propagation was made with respect to a number of torsion fatigue cycles.
2016-04-05
Technical Paper
2016-01-0256
Hideaki Nagano, Kenji Tomita, Yasuhiro Tanoue, Yuji Kobayashi, Itsuhei Kohri, Shinsuke Kato
Abstract In the winter, windshield glass fogging must be prevented through the intake of outdoor air into a vehicle. However, the corresponding energy loss via the ventilation system cannot be ignored. In the present study, the defogging pattern on the windshield is evaluated and the water vapor transportation in the flow field in the vehicle is analyzed in order to investigate the ventilation load by means of a numerical simulation. Some examined cases involve new outlet positions. Additionally, a new, energy-saving air supply method for defogging, with so-called “double-layer ventilator”, is proposed. In this method, one air jet layer is obtained via a conventional defogging opening in the vicinity of the windshield, supplying an outdoor air intake. The other jet consists of recirculated air that covers the outdoor air, preventing it from mixing with the surrounding air.
2016-04-05
Technical Paper
2016-01-0208
Xuzhi Du, Zhigang Yang, Hua Zhou, Qiliang Li, Zheyan Jin
Abstract The effect of jet geometry on flow, heat transfer and defrosting characteristics was numerically investigated for elliptic and rectangular impinging jets on an automobile windshield. Initially, various turbulence models within the commercial computational fluid dynamics (CFD) package FLUENT were employed and validated for a single jet, and the results indicated that the impinging jet heat transfer was more accurately predicted by the SST k -ω turbulence model, which was then utilized for this study. The aspect ratios (AR) of elliptic and rectangular jets were respectively 0.5, 1.0, and 2.0, with jet-to-target spacing h/d=2, 4 and jet-to-jet spacing c/d=4, and all those situations were numerically analyzed with the same air mass flow and jet open area. It was observed that the heat transfer coefficient and defrosting performance of the inclined windshield were significantly affected by the shape of the jet, and the best results were obtained with the elliptic jet arrangements.
2016-04-05
Technical Paper
2016-01-0216
Ramanand Singh, Remesh Kuzhikkali, Nitesh Shet, Sekarapandian Natarajan, Govind Kizhedath, Murugan Arumugam
Fogging (i.e. condensation of water vapor) in headlamps in severe weather conditions present both a performance and potential safety concern for automotive companies. Conventional headlamps are based on incandescent bulbs. In recent times, LED lighting has increasingly become the norm. However, LED based headlamps are prone to higher levels of fogging because they inherently produce less heat than the conventional incandescent or halogen bulbs. A headlamp design must be able to dispose all the formed condensate/fog in a fixed time even under severe thermal conditions. It is of great importance for the car manufacturer to be able to simulate the risk of condensation early in the design stage with an eye on the overall cost reduction. The combined use of experimental studies and numerical modelling is important to optimize headlamp design and to produce high-performance headlamps.
2016-04-05
Technical Paper
2016-01-0240
Ruobing Zhan, Gangfeng Tan, Bo Yang, Zhiwei Zhang, Tie Wang, Cenyi Liu, Xintong Wu, Yanjun Ren, Haobo Xu
Abstract The Organic Rankine Cycle System (ORC) is an effective means to use the solar energy. The system adopts the solar energy on the car roof as the heat source to make the ORC work and drive the thermoelectric air-conditioner. It can improve the entering comfort on the parking condition and the vehicle energy utilization efficiency. In this research, the system comprehensively applied the principle of sunshine concentration, heat collection and photo electricity. Then considering the working condition and performance features of ORC system, the car roof was designed to have a compact structure, through which the efficiency of the solar vehicle system could be improved. Firstly, the research analyzed the heat source temperature and the heat flux impact on the output power of the ORC system. After that, the performance of heat collection was identified according to the given thermoelectric air-condition’s power requirements.
2016-04-05
Technical Paper
2016-01-0246
Rupesh Sonu Kakade, Prashant Mer
Abstract Vehicle occupants, unlike building occupants, are exposed to continuously varying, non-uniform solar heat load. Automotive manufacturers use photovoltaic cells based solar sensor to measure intensity and direction of the direct-beam solar radiation. Use of the time of the day and the position - latitude and longitude - of a vehicle is also common to calculate direction of the direct-beam solar radiation. Two angles - azimuth and elevation - are used to completely define the direction of solar radiation with respect to the vehicle coordinate system. Although the use of solar sensor is common in today’s vehicles, the solar heat load on the occupants, because of their exposure to the direct-beam solar radiation remains the area of in-car subjective evaluation and tuning. Since the solar rays travel in parallel paths, application of the ray tracing method to determine solar insolation of the vehicle occupants is possible.
2016-04-05
Technical Paper
2016-01-0217
Somnath Sen, Mayur Selokar, Diwakar Nisad, Kamal Kishore
Abstract Adequate visibility through the vehicle windshield over the entire driving period is of paramount practical significance. Thin water film (fog) that forms on the windshield mainly during the winter season would reduce and disturb the driver’s visibility. This water film originates from condensing water vapor on inside surface of the windshield due to low outside temperatures. Primary source of this vapor is the passenger’s breath, which condenses on the windshield. Hot and dry air which impinges at certain velocity and angle relative to the windshield helps to remove the thin water film (defogging) and hence improves driver’s visibility. Hence a well-designed demisting device will help to eliminate this fog layer within very short span of time and brings an accepted level of visibility. An attempt is made here to design and develop a demisting device for a commercial vehicle with the help of numerical and analytical approach and later on validated with experimental results.
2016-04-05
Technical Paper
2016-01-0526
Sumiran Manghani, Girish Kumar
Abstract Vehicle performance is highly dependent on the design and material used. Fairing of a Human Powered Vehicle (HPV) is responsible for the reduction in the aerodynamic drag force and its material determines the overall weight and the top speed of the vehicle. Selection of material for fairings depends on various physical, mechanical and manufacturing properties along with practical considerations like availability of material. Today, an ever-increasing variety of composite materials and polymers are available, each of them possessing their own characteristics, applications, advantages and limitations. Many automotive composites are used for manufacturing fairings. Materials like Carbon fiber, Glass fiber (E glass, S glass), Aramid fiber (Kevlar 29, Kevlar 49) are some of the viable options that have been used in the past for manufacturing fairing of HPVs.
2016-04-05
Journal Article
2016-01-0519
Xiaoqing Xu, Bohan Liu, Yan Wang, Yibing Li
Abstract The mechanical behavior of polyvinyl butyral (PVB) film plays an important role in windshield crashworthiness and pedestrian protection and should be depth study. In this article, the uniaxial tension tests of PVB film at various strain rates (0.001 s-1, 0.01 s-1, 0.1 s-1, 1 s-1) and temperatures (-10°C, 0°C, 10°C, 23°C, 40°C, 55°C, 70°C) are conducted to investigate its mechanical behavior. Then, temperature and strain rate dependent viscoelastic characteristics of PVB are systematically studied. The results show that PVB is a kind of temperature and strain rate sensitive thermal viscoelastic material. Temperature increase and strain rate decrease have the same influence on mechanical properties of PVB. Besides, the mechanical characteristics of PVB change non-linearly with temperature and strain rate.
Viewing 151 to 180 of 4689