Criteria

Text:
Display:

Results

Viewing 121 to 150 of 4645
2016-04-05
Technical Paper
2016-01-0216
Ramanand Singh, Remesh Kuzhikkali, Nitesh Shet, Sekarapandian Natarajan, Govind Kizhedath, Murugan Arumugam
Fogging (i.e. condensation of water vapor) in headlamps in severe weather conditions present both a performance and potential safety concern for automotive companies. Conventional headlamps are based on incandescent bulbs. In recent times, LED lighting has increasingly become the norm. However, LED based headlamps are prone to higher levels of fogging because they inherently produce less heat than the conventional incandescent or halogen bulbs. A headlamp design must be able to dispose all the formed condensate/fog in a fixed time even under severe thermal conditions. It is of great importance for the car manufacturer to be able to simulate the risk of condensation early in the design stage with an eye on the overall cost reduction. The combined use of experimental studies and numerical modelling is important to optimize headlamp design and to produce high-performance headlamps.
2016-04-05
Technical Paper
2016-01-0208
Xuzhi Du, Zhigang Yang, Hua Zhou, Qiliang Li, Zheyan Jin
Abstract The effect of jet geometry on flow, heat transfer and defrosting characteristics was numerically investigated for elliptic and rectangular impinging jets on an automobile windshield. Initially, various turbulence models within the commercial computational fluid dynamics (CFD) package FLUENT were employed and validated for a single jet, and the results indicated that the impinging jet heat transfer was more accurately predicted by the SST k -ω turbulence model, which was then utilized for this study. The aspect ratios (AR) of elliptic and rectangular jets were respectively 0.5, 1.0, and 2.0, with jet-to-target spacing h/d=2, 4 and jet-to-jet spacing c/d=4, and all those situations were numerically analyzed with the same air mass flow and jet open area. It was observed that the heat transfer coefficient and defrosting performance of the inclined windshield were significantly affected by the shape of the jet, and the best results were obtained with the elliptic jet arrangements.
2016-04-05
Technical Paper
2016-01-1523
Libo Cao, Changhai Yao, Hequan Wu
Abstract The traditional deterministic optimal design is mostly based on meeting regulatory requirements specified in impact standards, without taking the randomness of the impact velocity and angle at the real world situation into consideration. This often leads to the optimization results that converge to the boundary constraints, thus cannot meet the reliability requirements of the product design. Structure members of B-pillar (e.g. inner panel, outer panel, and the reinforcing plate) play a major role in the side impact safety performance. This paper dealt with optimization of B-pillar by considering its dimensions and materials as the design variables, and the impact velocity and angle from real-world traffic accident conditions as the random variable inputs. Using a combination of design of experiment, response surface models, reliability theory and the reliability of design optimization method, a B-pillar was constructed based on the product quality engineering.
2016-04-05
Technical Paper
2016-01-0531
Pulkit Batra, Arpit Bansal, V Jeganathan ArulMoni
Abstract Friction stir processing (FSP) is a method of changing the properties of metal through intense, localized plastic deformation. This deformation is produced by forcibly inserting a non-consumable tool into a workpiece, and revolving the tool in a stirring motion as it is pushed laterally through the workpiece. It comprises of a rotating tool with pin and shoulder which are inserted into a single piece of material and traversed along the desired path to cover the region of interest. Friction between the shoulder and work piece results in localized heating which raises the temperature of the material to the range where it is plastically deformed. During this process, severe plastic deformation occurs and due to thermal exposure of material, it results in a significant evolution in the local microstructure. Carbon nanotubes were dispersed into Al matrix by multipass FSP to fabricate Al6082 T0/Fe-MWCNT.
2016-04-05
Technical Paper
2016-01-0510
Praveen Mishra, Subramanian Ganeshan
Abstract An automobile outer rear view mirror (ORVM) is fixed at the front exterior of the vehicle for helping the driver see areas behind and sides of the vehicle which are outside of their peripheral vision. Mirror Scalp is the cover which protects the components inside from human and other environmental damage. Hence the scalp must be properly designed and fitted to the rest of the assembly so that it allows the safe functioning of the ORVM, which is an active safety device. During automatic car washing, sometimes the scalp may get removed due to the huge force exerted by the scrubber, if the scalp is not fitted properly. Mirror scalp is fitted to the rest of the ORVM through snap-fits. Snap-fits are the simplest, quickest and most cost effective method of assembling two parts. When designed properly, parts with they can be assembled and disassembled numerous times without any adverse effect on the assembly and hence are most environmentally friendly.
2016-04-05
Technical Paper
2016-01-0473
Muthukumar Arunachalam, S Arunkumar, PraveenKumar Sampath, Abdul Haiyum, Beverly Katz
Abstract Current generation passenger vehicles are built with several electronic sensors and modules which are required for the functioning of passive safety systems. These sensors and modules are mounted on the vehicle body at locations chosen to meet safety functionality requirements. They are mounted on pillars or even directly on panels based on specific packaging requirements. The body panel or pillar poses local structural resonances and its dynamic behavior can directly affect the functioning of these sensors and modules. Hence a specific inertance performance level at the mounting locations is required for the proper functioning of those sensors and modules. Drive point modal frequency response function (FRF) analysis, at full vehicle model for the frequency range up to 1000 Hz, is performed using finite element method (FEM) and verified against the target level along with test correlation.
2016-04-05
Technical Paper
2016-01-0217
Somnath Sen, Mayur Selokar, Diwakar Nisad, Kamal Kishore
Abstract Adequate visibility through the vehicle windshield over the entire driving period is of paramount practical significance. Thin water film (fog) that forms on the windshield mainly during the winter season would reduce and disturb the driver’s visibility. This water film originates from condensing water vapor on inside surface of the windshield due to low outside temperatures. Primary source of this vapor is the passenger’s breath, which condenses on the windshield. Hot and dry air which impinges at certain velocity and angle relative to the windshield helps to remove the thin water film (defogging) and hence improves driver’s visibility. Hence a well-designed demisting device will help to eliminate this fog layer within very short span of time and brings an accepted level of visibility. An attempt is made here to design and develop a demisting device for a commercial vehicle with the help of numerical and analytical approach and later on validated with experimental results.
2016-04-05
Technical Paper
2016-01-0434
Roshan N. Mahadule, Jaideep Singh Chavan
Abstract Door closing velocity (DCV) is one of the important design parameter for door durability performance. The closing velocity varies with the design parameters and physical properties of the door. The variation in door closing effort may increase or decrease the durability of the door and body components, this can be a concern when the overall vehicle durability performance is considered. This paper gives a mathematical model to calculate the door closing effort accounting the energy sink from various door design parameters such as door seal, latch, hinge, door weight, checkstrap and cabin-pressure. In addition to this, the MS-Excel based computation tool has been developed, which aims to calculate the door closing velocity and energy contribution from each design parameter. This tool is very interactive and effective for durability engineer and helps in improving the quality of vehicle door design.
2016-04-05
Technical Paper
2016-01-1327
Zhenfeng Wang, Mingming Dong, Junfeng Xiang, Pu Gao, Liang Gu, Yushuai Wang
Abstract The study of mechanical properties special in the characteristics of elastic element is a challenging task for vehicle industry. Since torsion bar spring acts as an important part of elastic element, and improves performance of torsion bar spring is of great concern. The effects of the torsion bar spring pre-setting precision on the presetting performance are presented. Based on elastic-plastic theories, the algebraic model of torsion bar spring is established to analyze the stress, torque and residual stress under the yield and plastic conditions in pre-setting process. Then, the stress and strain states of various torsion bar springs in different conditions are simulated using the validated finite element model in ABAQUS software. The simulation results show the effects of torsion error on the pre-setting performance are less than 5% in the pre-setting process.
2016-04-05
Technical Paper
2016-01-1380
S. Khodaygan, Amir Ghasemali, Hamed Afrasiab
Abstract One of the most important characteristics of industrial products, especially mechanical set-ups, is considering the tolerances of production and assembly of these set-ups, which directly influences the products’ operations. In sheet metal structures, due to the high flexibility of the sheets, the errors appeared while assembly will be as highly influential as the errors due to the production tolerance of the sheets. As a result, having a comprehensive model which could analyze the assembly process of these structures and also clarifies the relation between the tolerance of the parts and the ultimate changes of the set-up will be of considerable importance. During the assembly process, the contact effect between the components is inevitable. If such effect is not considered, the contact surfaces will permeate. The purpose of this paper is to present a method to analyze the tolerance of flexible sheet structures, considering the contact effect between surfaces.
2016-04-05
Technical Paper
2016-01-1384
Mengshi Deng, Jian Lan
Abstract Glass lifter is a key part of automobile door system. Guide rail is the carrier of glass lifter, and it bears various load cases when glass lifer works. Mass, stiffness and natural frequencies are the factors that influence the performance of glass lifter. In order to design a lighter and reasonable glass lifter, topology optimization methods are studied in this paper. In a rope-wheel glass lifter, design domain is determined by the mechanical structure and working conditions. Firstly, the single target continuum structure topology optimization mathematic models of guide rail are built in this paper, and analysis of multi-stiffness topology optimization are carried out accordingly in which volume fraction is set as 0.4, 0.5 and 0.6. These models are based on SIMP (Solid Isotropic Material with Penalization) theory.
2016-04-05
Technical Paper
2016-01-1365
Siddharth Bhupendra Unadkat, Suhas Kangde, Mahalingesh Burkul, Mahesh Badireddy
Abstract The overall automotive industry is moving toward first time right test which in turn needs first time right analysis. This is due to the enormous pressure of cost, mass, time to market and availability of prototype vehicles for testing. Use of finite element methods enables to upfront predict the system behavior in operating conditions and evaluation of structural strength. In vehicle product development process, hood slam durability evaluation is one of the important tests for body closure structure. Current work showcases an effort made for developing virtual hood slam test. The virtual model consists of BIW, hood, hinge joint, interface like CRFM (cooling-radiator-fan module) and latch mechanism with spring preload. Analysis performed with LSDyna solver. An impact loading is applied by converting potential energy to kinetic energy, mimicking the hood dropping from a specified height on the hood latch.
2016-04-05
Technical Paper
2016-01-1454
Libo Dong, Stanley Chien, Jiang-Yu Zheng, Yaobin Chen, Rini Sherony, Hiroyuki Takahashi
Abstract Pedestrian Automatic Emergency Braking (PAEB) for helping avoiding/mitigating pedestrian crashes has been equipped on some passenger vehicles. Since approximately 70% pedestrian crashes occur in dark conditions, one of the important components in the PAEB evaluation is the development of standard testing at night. The test facility should include representative low-illuminance environment to enable the examination of the sensing and control functions of different PAEB systems. The goal of this research is to characterize and model light source distributions and variations in the low-illuminance environment and determine possible ways to reconstruct such an environment for PAEB evaluation. This paper describes a general method to collect light sources and illuminance information by processing large amount of potential collision locations at night from naturalistic driving video data.
2016-04-05
Technical Paper
2016-01-1415
William T. Neale, James Marr, David Hessel
Abstract This paper presents a methodology for generating photo realistic computer simulation environments of nighttime driving scenarios by combining nighttime photography and videography with video tracking [1] and projection mapping [2] technologies. Nighttime driving environments contain complex lighting conditions such as forward and signal lighting systems of vehicles, street lighting, and retro reflective markers and signage. The high dynamic range of nighttime lighting conditions make modeling of these systems difficult to render realistically through computer generated techniques alone. Photography and video, especially when using high dynamic range imaging, can produce realistic representations of the lighting environments. But because the video is only two dimensional, and lacks the flexibility of a three dimensional computer generated environment, the scenarios that can be represented are limited to the specific scenario recorded with video.
2016-04-05
Technical Paper
2016-01-1410
Stefan G. Grötsch, Morten Brink, Roland Fiederling, Thomas Liebetrau, Ingo Möllers, Jörg Moisel, Hermann Oppermann, Alexander Pfeuffer
Abstract A cooperation of several research partners supported by the German Federal Ministry of Research and Education proposes a new active matrix LED light source. A multi pixel flip chip LED array is directly mounted to an active driver IC. A total of 1024 pixel can be individually addressed through a serial data bus. Several of these units are integrated in a prototype headlamp to enable advanced light distribution patterns in an evaluation vehicle.
2016-04-05
Technical Paper
2016-01-1411
Sangmin Lee, Donghwa Shin, Jongseok Park, Ng Eng Chong, Fabrizio Cortigiani, Youngjae Choi
Abstract LED in automotive rear combination lighting (RCL) is becoming widely used in high end to mid class segment car. This is mainly fuelled by the strong influence of styling and requirement of a compact design. With OEMs competing to provide higher value to the customers such as longer warranty and advanced diagnostic features, the topic of semiconductor integration is becoming significant. Integration is a key to enable small form factor, high robustness and implementation of advanced technical functionality in the LED driver. However, the cost of implementing an integrated driver, if not partitioned effectively, will be much higher than the discrete solution. Therefore, it is important to implement the cost optimization strategy right from the conceptualization of the LED driver integrated device. In the beginning of this paper, the LED driving concept that is commonly used in the RCL lighting such as linear current sources and switching supply is discussed.
2016-04-05
Technical Paper
2016-01-1331
Shingo Hanano, Kanehiro Nagata, Yusuke Murase
Abstract The need to add more color variations to the traditional black gloss has increased globally in recent years. The intention is for automobile manufacturers to differentiate their products in terms of appearance design. The most noticeable trend is to add embellishment around the front grill. The same trend can be seen in the areas around vehicle doors. It is most common to use a coating material to emphasize the black gloss. However, in overseas countries it is a challenge to meet the required appearance quality, and under the current circumstances CKD is imported from Japan to meet such requirements. Recently, a new film-transfer technique has been established that can express black gloss as well as any coating material by transferring the roughness of the film surface. It is achieved by crimping the PET film onto the vinyl-chloride surface after the extrusion molding is performed. Moreover, we have successfully localized this technique and reduced the manufacturing cost.
2016-04-05
Technical Paper
2016-01-1332
Fredrik Henriksson, Kerstin Johansen
Abstract In the automotive industry, mass reduction and lightweight design is a continuing trend that does not show signs of declining. When looking at where to reduce weight in a vehicle, the body is a preferential subsystem due to its large contribution to overall mass and the stability of body composition over a specific model range. The automotive industry of today moves toward a greater differentiation in materials that compose a car, which can be seen in the several different multi material vehicle bodies that have been introduced by manufacturers in recent years. But while mixing materials may contribute to a good compromise between weight reduction and vehicle cost, it also proposes a number of challenges that need to be addressed. Among other material factors, the different coefficients of thermal expansions might introduce new stresses during painting and curing.
2016-04-05
Technical Paper
2016-01-1330
Lei Shi, Peng Yi, Zhan Zhang
Abstract The body joint stiffness plays an important role in achieving vehicle attribute targets. One of the major drawbacks of joint stiffness evaluation is the lack of a rigorous criterion to assess whether the stiffness is proper for a body structure. This paper presents a general joint stiffness metric based on Hooke's law to better evaluate the stiffness of a body joint. A strategy for target setting of body joint stiffness was developed for vehicle body design. Finally, a vehicle body example was presented to demonstrate the proposed methodology.
2016-04-05
Technical Paper
2016-01-1329
Fulin Wei, Yanhua Shen, Tao Xu
Abstract Off-road dump truck body is exposed to abrasive wear during handling of granular materials. The wear rate of body of dump truck has direct influence on maintenance and replacement during its service process. In this paper the discrete element method (DEM) is used to simulate the granular materials of dump truck. The wear of body floor during one dumping process can be achieved by cosimulation of FEM-DEM. The wear depth variation of body has the stochastic characteristic which can be modeled by Geometric Brownian Motion (GBM). The two parameters in the stochastic differential equation, drift coefficient and diffusion coefficient, can be estimated by the wear depth measuring data. It is possible to quantitatively predict the wear evolution of every grid point of the body floor by solving this stochastic differential equation. The simulation result of the wear model is helpful to optimize design of off-road dump truck body.
2016-04-05
Technical Paper
2016-01-1328
Praneeth Kurisetty, Naveen Sukumar, Umashanker Gupta
Abstract To compete with the current market trends, there is always a need to develop cost effective frame designs to meet the needs of the customer. During the development of new vehicles, the major focus is on weight reduction, so as to improve the load carrying capacity and fuel efficiency. Due to the introduction of new high strength materials, the static strength conditions can be met by the use of thinner frames, but the dynamic behavior of the frame deteriorates. The dynamic behaviors like ride and handling, comfort are affected by the stiffness of the vehicle frame. The stiffness of the frame is majorly defined by its vertical stiffness, lateral stiffness and torsional stiffness. The vertical stiffness of the frame plays major role in isolating road vibrations to frame mounted aggregates. The lateral stiffness plays a very important role in the handling of the vehicle and cornering ability of the vehicle.
2016-04-05
Technical Paper
2016-01-1266
Shinichi Urabe, Kazutaka Kimura, Yuki Kudo, Akinori Sato
Abstract Solar and other green energy technologies are attracting attention as a means of helping to address global warming caused by CO2 and other emission gases. Countries, factories, and individual homes around the world have already introduced photovoltaic energy power sources, a trend that is likely to increase in the future. Electric vehicles powered from photovoltaic energy systems can help decrease the CO2 emmissions caused by vehicles. Unlike vehicles used for solar car racing, it is not easy to equip conventional vehicles with solar modules because the available area for module installation is very small to maintain cabin space, and the body lines of conventional vehicles are also usually slightly rounded. These factors decrease the performance of photovoltaic energy systems and prevent sufficient electric power generation. This research aimed to estimate the effectiveness of a solar module power generating system equipped on a conventional car, the Toyota Prius PHV.
2016-04-05
Technical Paper
2016-01-1351
Simhachalam Bade
Abstract Aluminum alloys are widely used in the transportation because of their high strength-to-weight ratio and outstanding capability in absorbing energy. In this paper, performance of bumper with crash tubes using aluminum alloy AA7003 materials is compared with that of AA6061 and high strength steel (DP800) using numerical methods. Quasi-static test is simulated using the LS-DYNA implicit finite element program. Bumper and crash tubes are included in the finite element model. Symmetric Holes are provided in the crash tubes to initiate crushing. The energy absorbed by bumper and crash tubes are compared. Dynamic simulation is done using LS-Dyna explicit program. True stress-true plastic strain curves at different strain rates from the literature is used in the dynamic simulation of AA7003 material to study the strain rate effects on impact behavior of tubes. The impact mass is represented by RigidWall Planar Moving Force option in LSDYNA.
2016-04-05
Technical Paper
2016-01-1508
Gernot Pauer, Michal Kriska, Andreas Hirzer
Abstract Active bonnet safety systems are implemented into vehicles, to fulfill pedestrian head impact requirements despite little available deformation space. For such systems it is necessary to consider a variety of aspects already from the very beginning of the vehicle design process and the functionality of the whole system needs to be continually cross-checked throughout the whole design process. Many of these aspects are already supported by finite element (FE) methods from vehicle manufacturers and in this paper it is shown, how the last missing links within the development process, the optimization of pedestrian detection sensor signals can also be efficiently supported by FE simulation. The modeling and validation of a pressure tube based sensor system and so called “misuse objects” are demonstrated.
2016-04-05
Technical Paper
2016-01-1335
Abhishek Sinha, Kamlesh Yadav, Rajdeep Singh Khurana
Abstract The biggest challenge in vehicle BIW design today is to make a light, cost effective and energy absorbing structure. With the increasing competition as well as increasing customer awareness, today’s vehicle has to satisfy several aesthetic and functional requirements besides the mandatory regulatory requirements. Working on global platform is challenging in order to comply with both pedestrian protection and low speed bumper impact (ECE-R42) and, at the same time, to meet the styling intent of reducing the front overhang. Pedestrian lower leg compliance demands space between bumper member and bumper: a condition that reduces the space available for energy absorption during low speed impact (ECE-R42). Therefore, reduction in front overhang poses a problem in meeting both the requirements with limited space.
2016-04-05
Technical Paper
2016-01-0022
Kenta Morishima, Shigeru Thomas Oho, Satoshi Shimada
Abstract A virtual power window control system was built in order to look into and demonstrate applications of microcontroller models. A virtual ECU simulated microcontroller hardware operations. The microcontroller program, which was written in binary digital codes, was executed step-by-step as the virtual ECU simulation went on. Thus, production-ready codes of ECUs are of primary interest in this research. The mechanical system of the power window, the DC motor to lift the window glass, the H-bridge MOSFET drivers, and the current sensing circuit to detect window locking are also modeled. This means that the hardware system of the control system was precisely modeled in terms of mechanical and circuit components. By integrating these models into continuous and discrete co-simulation, the power window control system was analyzed in detail from the microscopic command execution of the microcontroller to the macroscopic motion of the window mechanism altogether.
2016-04-05
Technical Paper
2016-01-1532
Kyoungtaek Kwak, Seungwoo Seo, Randi Potekin, Antoine Blanchard, Alexander Vakakis, Donald McFarland, Lawrence Bergman
Abstract The purpose of this study is to develop a dynamic model that can accurately predict the motion of the door handle and counterweight during side impact crash tests. The door locking system, mainly composed of the door outside handle and door latch, is theoretically modeled, and it is assumed that the door outer panel can rotate and translate in all three directions during a side impact crash. Additionally, the numerical results are compared with real crash video footage, and satisfactory qualitative agreement is found. Finally, the simplified test rig that efficiently reflects the real crash test is introduced, and its operation is analyzed.
2016-04-05
Technical Paper
2016-01-1408
John D. Bullough, Nicholas P. Skinner, Timothy T. Plummer
Abstract Although adaptive driving beam headlight systems are not presently defined in North American headlighting standards, evidence for the potential safety benefits of these systems is increasing. Field measurements of the photometric performance of an adaptive driving bean system were made in response to simulated headlight and tail light conditions. Roadway geometries were varied and multiple measurements for many conditions were made to assess repeatability of measurements. The results of the testing are summarized in the context of validating the likely safety impacts of these systems and of providing recommendations for standardized measurement conditions to ensure reliability.
2016-04-05
Technical Paper
2016-01-1406
Rainer Neumann
Abstract Adaptive driving beam (ADB), which was first homologated in the ECE world (ECE 123) in 2012 has changed the automotive Front Lighting philosophy completely. Whereas we currently live with separate low beam and high beam features, also used in a combined way, we will have in the future a camera driven light distribution, which is a kind of modified high beam light pattern. ADB is a camera based lighting system, which enables the driver to achieve at night nearly high beam visibility without glaring oncoming or proceeding vehicles and road users. Once the presence of other vehicles is detected the headlamps change the light pattern and block the light where the oncoming or proceeding vehicles are located. The typical low beam light distribution with given and specified cutoff line will only be used in small speed areas.
2016-04-05
Technical Paper
2016-01-1339
Piyush Bubna, Marc Wiseman
Abstract OEMs are investigating opportunities to reduce vehicle mass, driven by a need to meet upcoming CAFE targets, increase the range and reduce battery size of EVs. A number of lightweight materials including high strength steels, aluminum alloys, plastics and composites are now in production. To facilitate development of corporate R&D and commercialization plans for new materials, it is beneficial to understand the current manufacturing costs for production components, and their impact on piece price at different volumes. This paper investigates design and cost impact of light-weighting with respect to front door and floor assembly of Toyota Corolla and BMW i3. Toyota Corolla has a traditional steel body and is sold in high volumes while BMW i3 has relatively low annual sales and is primarily made of composite, aluminum and plastic parts.
Viewing 121 to 150 of 4645