Criteria

Text:
Display:

Results

Viewing 91 to 120 of 4671
2017-01-10
Technical Paper
2017-26-0322
Saktheeswaran Kasinathan, Sreenivasa Gupta, Husain Agha, Rajiv Modi
Abstract In any industry, early detection and mitigation of a failure in component is vital for feasible design changes or development iterations or saving money. So it becomes pivotal to capture the failure mode in an accelerated way. This theory poses many challenges in devising the methodology to validate the failure mode. In real world, vehicle head lamp is exposed to all possible kinds of harsh environments such as variable daily ambient, rain, dust and engine compartment temperature …etc. This brings rapid thermal stress onto headlamp resulting into warpage cracks. At vehicle level on particular model, this failure is typically observed after 20,000-25,000 kms in a span of 3-4 months of running. Any corrective action to revalidate the design change or improvement will need similar timelines in regular way to test, which is quite high in product development cycle.
2017-01-10
Technical Paper
2017-26-0207
Dayal Mirthinti, Dinesh Sahrawat, Rohit Dang
Abstract In automobile, NVH has been playing an important role in defining the overall quality of the vehicle. Continuous efforts are being put in globally by engineers to make the travel experience as comfortable as possible for both commercial and passenger segment vehicles. The front wiping system being a critical safety feature in an automobile is one of the sources of structural vibrations/noise due to numerous moving child parts. Therefore, the layout of the wiper motor in the vehicle is an important aspect of Vehicle NVH. These vibrations and noise levels become more pronounced if the wiper motor is mounted inside the passenger compartment, a layout that is commonly seen in commercial vehicles. This paper focuses on measures to improve the NVH while having the layout of the wiping system inside the passenger compartment of the vehicle.
2017-01-10
Technical Paper
2017-26-0221
Swamy Mukkera, Aditya Pandey, Kodali Ajay Krishna, Sanjeev Patil, P L N Prasad
Abstract Wind noise is becoming important for automotive development due to significant reductions in road and engine noise. This aerodynamic noise is dominant at highway speeds and contributes towards higher frequency noise (>250Hz). In automotive industry accurate prediction and control of noise sources results in improved customer satisfaction. The aerodynamic noise prediction and vehicle component design optimization is generally executed through very expensive wind tunnel testing. Even with the recent advances in the computational power, predicting the flow induced noise sources is still a challenging and computationally expensive problem. A typical case of fluid-solid interaction at higher speeds results into broadband noise and it is inherently an unsteady phenomenon. To capture such a broad range of frequency, Detached Eddy Simulation (DES) has been proven to be the most practical and fairly accurate technique as sighted in literature.
2017-01-10
Technical Paper
2017-26-0254
Ganesh Krishna Babar
Abstract Canopy design is governed by CPCB regulations. The regulations explicitly tells about noise levels. It’s very important to have the proper ventilation of canopy to ensure the proper working at all climatic conditions. Mostly it is installed at commercial locations & hence the ownership cost matters. Reducing the footprint without affecting the power output is challenging. It implies the need of the CFD simulation to predict the cooling performance of the canopy. The baseline canopy is tested to estimate the performance parameters. It is modelled in CFD with all the minute details. All the parts including engine, alternator, fan, fuel tank are modelled. MRF(Moving Reference Frame) model used to simulate fan performance. The cooling systems like radiator & oil cooler is modelled as porous region. The total flow across canopy & the air velocity across critical regions is used to define the performance.
2017-01-10
Technical Paper
2017-26-0023
Amit Pathak, Anish Kumar, Rahul Lamba
Abstract Risk of injury to occupant in the event of side impact is considerably higher compared to frontal or rear impact as the energy absorbing zones at the front and rear of vehicle is high whereas limited space is available to dissipate the impact energy in the event of side impact. In such scenario strength of side door plays an important role in protecting the occupant. Side door beam in door structure contributes significantly towards the lateral stiffness and plays dominant role in limiting the structural intrusion into passenger compartment. Hence it is interesting to understand the effect of beam specification and orientation on side door strength. Since these factors not only affect the strength but also the cost and weight targets, their study and analysis is important with respect to door design This paper showcases the effect of beam layout and its specifications on the overall strength of the door with an experimental approach using physical test.
2017-01-10
Technical Paper
2017-26-0007
Siva Murugesan, Vishakha S Bhagat, B V Shamsundara, Abhay Mannikar
Abstract In year 2015, 17 people were killed every hour by road accidents in India [1]. The occurrence of road accidents is observed to be higher during night, when visibility is at its lowest. The two factors which affect visibility are insufficient illumination and glare caused by the oncoming traffic. The Adaptive Front Lighting System [AFS] is an active safety feature which addresses these problems by employing specific lighting modes for Town, Country, Expressway conditions and automatic switching between Driving Beam and Passing Beam whenever required. Matrix of LEDs or a Projector with an actuator or a combination of both is employed in achieving different Lighting modes. The projector based AFS module is preferred for implementing the AFS control logic for passing beam owing to its economic cost.
2016-11-08
Technical Paper
2016-32-0029
Shohei Suzuki
Abstract One of the issues when developing motocrossers is that, when a motocrosser jumps and lands, the landing applies heavy loads on various parts of the bike, particularly the frame, and produces high stresses. This sometimes causes deformation, cracks, breakage, etc. during strength tests on actual bikes, and it takes much time and money to check the effects and develop solutions. To solve this problem, we have developed a method for simulating the jump-landing of motocrossers.
2016-10-28
Technical Paper
Bodies and Structures
2016-10-25
Technical Paper
2016-36-0210
Marcelo Gustavo Coelho Resende, Márcio Eduardo Silveira, Tiago Alceu Coelho Resende
Abstract The numerical simulation is currently an essential tool in the automotive engineering because it is possible in the virtual stage of product development to evaluate the performance of a component in the level of stress that would it be submitted, as well as evaluating displacement, natural frequency, stiffness and to the feasibility of manufacturing. Due to the stringent emission standards and pollutant, as well as sustainability guidelines, the goal of any automotive design is always seeking the maximum structural performance with minimal possible mass. This premise leads directly to a numerical optimization problem, that seeks the maximum (or minimum) of a function, subject to several constraints. Numerical optimization techniques can be divided mainly into: shape optimization, parametric optimization and topology optimization.
2016-10-25
Technical Paper
2016-36-0227
Ivan R. Begosso, Alex F. Lima, Bruno S. Silva, Danilo M. Lessio, Gilvan P. Rossi, Klemer Santiago
Abstract The trailer hitch is an accessory which has been widely applied to vehicles as a protection device for low speed rear impact, aiming the integrity of the rear fascia. Its installation is commonly made at accessories shops without the orientation of the OEM’s and its project normally does not pursue the integration with vehicle structure. Using Finite Element Method, this work has as objective to study the influence of the trailer hitch in the body structure of small hatchback passenger vehicle during rear impact.
2016-10-25
Technical Paper
2016-36-0128
Jacob Sanchez, Melcior Malivern, Núria Parera, Alba Fornells
Abstract In order to obtain more information from the side impact tests, a pole was fully instrumented with triaxle load cells. Also, a sled modification was carried out providing a sub-frame view of the vehicle during the entire test and making possible to compare the structure and element deformations with the obtained data. An in-depth analysis of vehicle structural behavior focused on the forces received by the vehicle during the pole side impact test was made. A crash test was set to validate the acquisition system of the instrumented pole. The obtained data like the forces and the deformations were analyzed in depth and used for a structural study of the vehicle. The data acquired by the acquisition system was used to obtain a force diagram from the pole and a comparison was made with the vehicle absorption mechanisms and structural elements involved. Moreover, the force data was compared with the sub-frame view and with the structural element’s deformation.
2016-10-25
Technical Paper
2016-36-0195
Gustavo Silva, Icaro Vilasboas, Mariana Oliveira, Cristiane Gonçalves, Cristina Kawakami, Walmir Peraro
Abstract Organic light-emitting diode (OLED) is a promising technology that presents many important features to improve the efficiency of lighting and screen applications. The automotive lighting application requirements are prompting lots of research related to this solid-state light source. The aim of this study is to understand the OLED technology and discuss its main characteristics, such as luminance, efficiency, lifetime, emitting color, and organic materials. Also, to investigate the opportunities and requirements to be applied in vehicle exterior lighting.
2016-10-25
Technical Paper
2016-36-0511
Wilcker Neuwald Schinestzki, Daniel Gustavo Schreiner, Carlos Eduardo Guex Falcão
Abstract The drag reduction system, commonly used in Formula 1, has as task to reduce the drag force that acts in the vehicle’s airfoils, increasing considerably its speed. When it comes to Formula SAE competition, since the speeds are lower than in F1, the purpose of the DRS can easily become the cooling, despite its name. This paper comes to the development of a drag reduction system applied to the frontal wing whose major objective is to increase the mass flow rate of air through the radiator. Based on a preliminary work supported by computational fluid dynamics, a frontal wing DRS can increase the mass flow rate in approximately 65% at an average velocity of 12 meters per second, which allows the team to use a smaller and lightweight radiator. The challenge was to design a lightweight and reliable automatic system, since it cannot fail nor take away the driver’s attention.
2016-09-27
Technical Paper
2016-01-2103
Eric Barton
This technical paper details an optimized Drivmatic machine design delivered to a Tier 1 aero structure supplier to automate drilling and installation of rivets, hi-loks, lockbolts & swage collars for individual fuselage panel assemblies with high throughput & strict quality requirements. While certain robot solutions continue to be explored for specific applications at many Tier 1 aero structure suppliers, robot payload capacity has limitations beyond certain criteria, which often times point towards an alternative machine design as in this case study. A typical approach for adding more automation is to allocate shop floor space based on the solution’s foot print, however contrary to most approaches this solution had to be designed to fit within a pre-determined factory footprint over a geographic location with a high water table that would not permit a foundation.
2016-09-27
Technical Paper
2016-01-2105
Thomas G. Jefferson, Richard Crossley, Anthony Smith, Svetan Ratchev
Abstract This paper presents novel development of a reconfigurable assembly cell which assembles multiple aerostructure products. Most aerostructure assembly systems are designed to produce one variant only. For multiple variants, each assembly typically has a dedicated assembly cell, despite most assemblies requiring a process of drilling and fastening to similar tolerances. Assembly systems that produce more than one variant do exist but have long changeover or involve extensive retrofitting. Quick assembly of multiple products using one assembly system offers significant cost savings from reductions in capital expenditure and lead time. Recent trends advocate Reconfigurable Assembly Systems (RAS) as a solution; designed to have exactly the functionality necessary to produce a group of similar components. A state-of-the-art review finds significant benefits in deploying RAS for a group of aerostructures variants.
2016-09-27
Technical Paper
2016-01-2095
Agata Suwala, Lucy Agyepong, Andrew Silcox
Abstract Reduction of overall drag to improve aircraft performance has always been one of the goals for aircraft manufacturers. One of the key contributors to decreasing drag is achieving laminar flow on a large proportion of the wing. Laminar flow requires parts to be manufactured and assembled within tighter tolerance bands than current build processes. Drilling of aircraft wings to the tolerances demanded by laminar flow requires machines with the stiffness and accuracy of a CNC machine while having the flexibility and envelope of an articulated arm. This paper describes the development and evaluation of high accuracy automated processes to enable the assembly of a one-off innovative laminar flow wing concept. This project is a continuation of a previously published SAE paper related to the development of advanced thermally stable and lightweight assembly fixture required to maintain laminar flow tolerances.
2016-09-27
Journal Article
2016-01-2112
Hilmar Apmann
Abstract As a new material FML, made by aluminum foils and Glasfiber-Prepreg, is a real alternative to common materials for fuselages of aircrafts like monolithic aluminum or CFRP. Since experiences within A380 this material has some really good advantages and develops to the status as alternative to aluminum and composite structures. To become FML as a real alternative to aluminum and carbon structures there are many things to improve: design, material, costs and process chain. So following one of the main goals for an industrial application for high production rates of aircrafts is the automation of production processes inside the process chain for FML-parts like skins and panels for fuselages. To reach this goal for high production rates first steps of automation inside this new process chain have been developed in the last two years. Main steps is the automated lay-up of metallic foils and Glasfiber-Prepreg.
2016-09-27
Technical Paper
2016-01-2124
Sara Nilsson, Jonas Jensen, Mats Björkman, Erik Sundin
Abstract Carbon fiber-reinforced plastic (CFRP) is one of the most commonly used materials in the aerospace industry today. CFRP in pre-impregnated form is an anisotropic material whose properties can be controlled to a high level by the designer. Sometimes, these properties make the material hard to predict with regards to how the geometry affects manufacturing aspects. This paper describes eleven design rules originating from different guidelines that describe geometrical design choices and deals with manufacturability problems that are connected to them, why they are connected and how they can be minimized or avoided. Examples of design choices dealt with in the rules include double curvature shapes, assembly of uncured CFRP components and access for non-destructive testing (NDT). To verify the technical content and ensure practicability, the rules were developed by, inter alia, studying literature and performing case studies at SAAB Aerostructures.
2016-09-27
Journal Article
2016-01-2120
David Judt, Kevin Forster, Helen Lockett, Craig Lawson, Philip Webb
Abstract In the civil aircraft industry there is a continuous drive to increase the aircraft production rate, particularly for single aisle aircraft where there is a large backlog of orders. One of the bottlenecks is the wing assembly process which is largely manual due to the complexity of the task and the limited accessibility. The presented work describes a general wing build approach for both structure and systems equipping operations. A modified build philosophy is then proposed, concerned with large component pre-equipping, such as skins, spars or ribs. The approach benefits from an offloading of the systems equipping phase and allowing for higher flexibility to organize the pre-equipping stations as separate entities from the overall production line. Its application is presented in the context of an industrial project focused on selecting feasible system candidates for a fixed wing design, based on assembly consideration risks for tooling, interference and access.
2016-09-27
Technical Paper
2016-01-2133
Carl Landau
Abstract Aircraft manufacturers are seeking automated systems capable of positioning large structural components with a positional accuracy of ±0.25mm. Previous attempts at using coordinated arm robots for such applications have suffered from the use of low accuracy robots and minimal systems integration. Electroimpact has designed a system that leverages our patented Accurate Robot technology to create an extensively automated and comprehensively integrated process driven by the native airplane component geometry. The predominantly auto-generated programs are executed on a single Siemens CNC that controls two Electroimpact-enhanced Kuka 6 axis robots. This paper documents the system design including the specification, applicable technologies, descriptions of system components, and the comprehensive system integration. The first use of this system will be the accurate assembly of production empennage panels for the Boeing 777X, 787 and 777 airplanes.
2016-09-27
Technical Paper
2016-01-2130
Enkhsaikhan Boldsaikhan, Shintaro fukada, Mitsuo Fujimoto, Kenichi Kamimuki, Hideki Okada, Brent Duncan, Phuonghanh Bui, Michael Yeshiambel, Brian Brown, Alan Handyside
Abstract The Refill Friction Spot Joining (RFSJ) is an emerging solid-state spot welding technology that thermo-mechanically creates a molecular-level bond between the work-pieces. RFSJ does not consume any filler or foreign materials so that no additional weight is introduced to the assembly. As the solid-to-liquid phase transition is not involved in RFSJ in general, there is no lack of fusion or material deterioration caused by liquefaction and solidification. Unlike the conventional friction stir spot welding, RFSJ produces a spot joint with a perfectly flush surface finish without a key or exit hole. Currently, the aerospace industry employs solid rivets for fastening the primary structures as they meet the baseline requirements and have well-established standards and specifications.
2016-09-27
Journal Article
2016-01-2139
Hendrik Susemihl, Christian Moeller, Simon Kothe, Hans Christian Schmidt, Nihar Shah, Christoph Brillinger, Jörg Wollnack, Wolfgang Hintze
Abstract A mobile robotic system is presented as a new approach for machining applications of large aircraft components. Huge and heavy workshop machines are commonly used for components with large dimensions. The system presented in this paper consists of a standard serial robot kinematics and a mobile platform as well as a stereo camera system for optical measurements. Investigations of the entire system show that the mechanical design of the mobile platform has no significant influence on the machining accuracy. With mobile machines referencing becomes an important issue. This paper introduces an optical method for determining the position of the mobile platform in relation to the component and shows its accuracy limits. Furthermore, a method for increasing the absolute accuracy of the robots end-effector with help of stereo camera vision is presented.
2016-09-27
Technical Paper
2016-01-8049
Keith Friedman, Khanh Bui, John Hutchinson, Matthew Stephens, Francisco Gonzalez
Abstract Frame rail design advances for the heavy truck industry provide numerous opportunities for enhanced protection of fuel storage systems. One aspect of the advanced frame technology now available is the ability to vary the frame rail separation along the length of the truck, as well as the depth of the frame. In this study, the effect of incorporating the fuel storage system within advanced technology tapered frame rails was evaluated using virtual testing under impact conditions. The impact performance was evaluated under a range of horizontal impacts conditions. The performance observed was quantified and then compared with previous testing of baseline diesel tank systems. Fuel storage system impact performance metrics over the range of crash conditions considered were quantified using virtual testing methods. The results obtained from the application of the impact performance evaluation methodology were then described.
2016-09-27
Technical Paper
2016-01-8053
Adime Kofi Bonsi, Marius-Dorin Surcel
Abstract The objective of this project was to provide pertinent information on the performance of refrigeration and heating transportation units to help fleets make decisions that will improve efficiency and increase productivity. To achieve this objective, tests were designed to measure the performance of selected refrigeration and heating units, mounted on refrigerated and heated van semitrailers. Cooling and freezing tests were carried out in summer conditions while heating tests were carried out in winter conditions, for various temperature settings. Two fundamental approaches were considered: the design of the refrigerated or heated trailer and the temperature setting of the refrigeration or heating unit. For cooling and freezing tests, the fuel consumption comparison between similar trailer models of different ages showed that newer units performed better than older ones.
2016-09-27
Technical Paper
2016-01-8050
Chihua Lu, Wenxin Yang, Hao Zheng, Jingqiang Liang, Guang Fu
Abstract In this paper, we propose a method of dynamics simulation and analysis based on superelement modeling to increase the efficiency of dynamics simulation for vehicle body structure. Using this method, a certain multi-purpose vehicle (MPV) body structure was divided into several subsystems, and the modal parameters and frequency response functions of which were obtained through superelement condensation, residual structure solution, and superelement data restoration. The study shows that compared to the traditional modeling method, the computational time for vehicle body modal analysis can be reduced by 6.9% without reducing accuracy; for the purpose of structural optimization, the computational time can be reduced by 87.7% for frequency response analyses of optimizations; consistency between simulation and testing can be achieved on peak frequency points and general trends for the vibration frequency responses of interior front row floors under accelerating conditions.
2016-09-27
Journal Article
2016-01-8015
Brian R. McAuliffe, Alanna S. Wall
Abstract This paper describes an investigation of the performance potential of conventional flat-panel boat-tail concepts applied to tractor-trailer combinations. The study makes use of data from two wind-tunnel investigations, using model scales of 10% and 30%. Variations in boat-tail geometry were evaluated including the influence of length, side-panel angle and shape, top-panel angle and vertical position, and the presence of a lower panel. In addition, the beneficial interaction of the aerodynamic influence of boat-tails and side-skirts that provides a larger drag reduction than the sum of the individual-component drag reductions, identified in recent years through wind-tunnel tests in different facilities, has been further confirmed. This confirmation was accomplished using combinations of various boat-tails and side-skirts, with additional variations in the configuration of the tractor-trailer configuration.
2016-09-27
Technical Paper
2016-01-8155
Devaraj Dasarathan, Jonathan Jilesen, David Croteau, Ray Ayala
Abstract Side window clarity and its effect on side mirror visibility plays a major role in driver comfort. Driving in inclement weather conditions such as rain can be stressful, and having optimal visibility under these conditions is ideal. However, extreme conditions can overwhelm exterior water management devices, resulting in rivulets of water flowing over the a-pillar and onto the vehicle’s side glass. Once on the side glass, these rivulets and the pooling of water they feed, can significantly impair the driver’s ability to see the side mirror and to see outwardly when in situations such as changing lanes. Designing exterior water management features of a vehicle is a challenging exercise, as traditionally, physical testing methods first require a full-scale vehicle for evaluations to be possible. Additionally, common water management devices such as grooves and channels often have undesirable aesthetic, drag, and wind noise implications.
2016-09-27
Technical Paper
2016-01-8141
Brian R. McAuliffe
Abstract With increasing use of boat-tails on Canadian roads, a concern had been raised regarding the possibility for ice and snow to accumulate and shed from the cavity of a boat-tail affixed to a dry-van trailer, posing a hazard for other road users. This paper describes a preliminary evaluation of the potential for ice and snow accumulation in the cavity of a boat-tail-equipped heavy-duty vehicle. A transient CFD approach was used and combined with a quasi-static particle-tracking simulation to evaluate, firstly, the tendency of various representative ice or snow particles to be entrained in the vehicle wake, and secondly, the potential of such particles to accumulate on the aft end of a dry-van trailer with and without various boat-tail configurations. Results of the particle tracking analyses showed that the greatest numbers of particles impinge on the base of the trailer for the no-boat-tail case, concentrated on the upper surface of the back face of the trailer.
2016-09-27
Technical Paper
2016-01-8138
Pranav Shinde, K Ravi, Nandhini Nehru, Sushant Pawar, Balaji Balakrishnan, Vinit Nair
Abstract Body in white (BIW) forms a major structure in any automobile. It is responsible for safety and structural rigidity of the vehicle. Also, this frame supports the power plant, auxiliary equipments and all body parts of the vehicle. When it comes to judging the performance of the vehicle, BIW is analyzed not only for its strength and shape but also the weight. Light weight BIW structures have grown rapidly in order to fulfill the requirements of the best vehicle performance in dynamic conditions. Since then lot of efforts have been put into computer-aided engineering (CAE), materials research, advanced manufacturing processes and joining methods. Each of them play a critical role in BIW functionality. Constructional designing, development of light materials with improved strength and special manufacturing practices for BIW are few research areas with scope of improvement. This paper attempts to review various factors studied for BIW weight reduction.
2016-09-27
Technical Paper
2016-01-8123
Lei Peng, Zhuo Wang, Jiantao Gu
Abstract Body structure design needs to meet multi-attributes requirements such as global bend stiffness/modal, torsion stiffness/modal, Noise and velocity transfer functions (NTF/VTF), and others. Computer-aided engineering (CAE) is a significant way to enhance the accuracy of design results. However, it also brings computation burden for optimization. In order to improve the performance and reduce the weight of automobile body structure, this paper presents a novel process of body CAE multi-attributes optimization. Four significant phases are described: 1) Sensitivity analysis for each body CAE performance, 2) MDO process, 3) Non-sensitive gauges reducing, and 4) Slightly optimization. Considering the mixed variables in the MDO process including continuous geometry shapes and discrete gauges, the developed continuous relaxation method was employed to deal with such situation.
Viewing 91 to 120 of 4671