Criteria

Text:
Display:

Results

Viewing 61 to 90 of 4694
2017-03-28
Technical Paper
2017-01-0275
N. Obuli Karthikeyan, N. Prajitha, P. Sethu Madhavan
Abstract As technology gets upgraded every day, automotive manufacturers are paying more attention towards delivering a highly reliable product which performs its intended function throughout its useful life (without any failure). To develop a reliable product, accelerated combined stress testing should be conducted in addition to the conventional design validation protocol for the product. It brings out most of the potential failure modes of the product, so that necessary actions can be taken for the reliability improvement. This paper discusses about the field failure simulation and reliability estimation of automotive headlamp relays using accelerated combined stress testing. To analyze various field failure modes, performance and tear down analysis were carried out on the field failure samples. Field data (i.e. electrical, thermal and vibration signals) were acquired to evaluate normal use conditions.
2017-03-28
Technical Paper
2017-01-0417
Yingjun Li, Yunkai Gao, Gangan Ma, Qianqian Du, Yabin Wan
Abstract To solve the problem of serious roller wear and improve the smoothness of the sliding door motion process, the rigid-flexible coupling multi-body model of the vehicle sliding door was built in ADAMS. Force boundary conditions of the model were determined to meet the speed requirement of monitoring point and time requirement of door opening-closing process according to the bench test specification. The results of dynamic simulation agreed well with that of test so the practicability and credibility of the model was verified. In the optimization of the ride comfort of the sliding door, two different schemes were proposed. The one was to optimize the position of hinge pivots and the other was to optimize the structural parameters of the middle guide. The impact load of lead roller on middle guide, the curvature of the motion trajectory and angular acceleration of the sliding door centroid were taken as optimization objectives.
2017-03-28
Technical Paper
2017-01-0395
Xin Xie, Danielle Zeng, Boyang Zhang, Junrui Li, Liping Yan, Lianxiang Yang
Abstract Vehicle front panel is an interior part which has a major impact on the consumers’ experience of the vehicles. To keep a good appearance during long time aging period, most of the front panel is designed as a rough surface. Some types of surface defects on the rough surface can only be observed under the exposure of certain angled sun light. This brings great difficulties in finding surface defects on the production line. This paper introduces a novel polarized laser light based surface quality inspection method for the rough surfaces on the vehicle front panel. By using the novel surface quality inspection system, the surface defects can be detected real-timely even without the exposure under certain angled sun light. The optical fundamentals, theory derivation, experiment setup and testing result are shown in detail in this paper.
2017-03-28
Technical Paper
2017-01-1361
Huan-Ping Chiu, Gerald Uhlenberg, Alex Wang, Jung Hsien Yen
Abstract In this study, we are presenting design considerations for the development of a LED (Light-Emitting Diode) bi-function headlight module to replace conventional HID (High-Intensity Discharge) projector modules for retrofitting or first installation purposes. The objective was to develop a projector-type module to outperform current 35 W HID light sources in both low beam and high beam, but with far less installation space. Essential features like multichip LED usage and the optical system design will be described in detail. Special care was taken for the heat management of the high-power LEDs, with optimization of the heat dissipation thermal path via printed circuit board, heatsink and active cooling by extensive Computational Fluid Dynamics simulation work (CFD). The achieved projector lumen output of greater 1300 lm in low beam and 2000 lm in high beam enables a projector module of very compact size (<1,200 cm3) to easily replace HID modules.
2017-03-28
Technical Paper
2017-01-1360
John D. Bullough
Abstract Nighttime driving cannot be accomplished without vehicle headlighting. A growing body of evidence demonstrates the role of lighting on visual performance and in turn on nightttime driving safety in terms of crashes. Indirect impacts of lighting via comfort or other factors are less well understood, however. A two-part field study using real-world drivers of an instrumented vehicle was conducted to assess the potential role of oncoming headlight glare as a factor in driving behaviors that might be related to increased crash risks. In the first part of the study, drivers' behaviors when navigating through roadway intersections having different levels of crash risk were recorded in order to identify responses that were correlated with the risk level. In the second part, drivers were exposed to different levels of glare from oncoming headlights; several of the same risk-related behaviors identified in the first part of the study were exhibited.
2017-03-28
Technical Paper
2017-01-1365
Michael Larsen
Abstract Vehicle certification requirements generally fall into 2 categories: self-certification and various forms of type approval. Self-certification requirements used in the United States under Federal Motor Vehicle Safety Standards (FMVSS) regulations must be objective and measurable with clear pass / fail criteria. On the other hand, Type Approval requirements used in Europe under United Nations Economic Commission for Europe (UNECE) regulations can be more open ended, relying on the mandated 3rd party certification agency to appropriately interpret and apply the requirements based on the design and configuration of a vehicle. The use of 3rd party certification is especially helpful when applying regulatory requirements for complex vehicle systems that operate dynamically, changing based on inputs from the surrounding environment. One such system is Adaptive Driving Beam (ADB).
2017-03-28
Technical Paper
2017-01-1358
Hyunbin Park
Abstract This paper presents a novel rear-view side mirror constructed with an external lens and a planar mirror to improve aerodynamics and minimize the blind spot of drivers. To resolve the drawback of the conventional side mirror, some vehicle manufacturers have lately attempted to develop a camera-based solution to replace traditional protruding side mirrors. However, driving vehicles on public roads without such side mirrors is illegal in most countries including the USA. The United States Federal Motor Vehicle Safety Standards (FMVSS) specifies that the mirror installed on the driver side should be flat and should have unit magnification. The proposed system avoids the large, protruding, external side-mirror that is currently used in present-day vehicles. Instead, it integrates this external element into the interior of the vehicle to improve aerodynamic resistance, safety, and styling.
2017-03-28
Technical Paper
2017-01-1451
Jan Vychytil, Jan Spicka, Ludek Hyncik, Jaroslav Manas, Petr Pavlata, Radim Striegler, Tomas Moser, Radek Valasek
Abstract In this paper a novel approach in developing a simplified model of a vehicle front-end is presented. Its surface is segmented to form an MBS model with hundreds of rigid bodies connected via translational joints to a base body. Local stiffness of each joint is calibrated using a headform or a legform impactor corresponding to the EuroNCAP mapping. Hence, the distribution of stiffness of the front-end is taken into account. The model of the front-end is embedded in a whole model of a small car in a simulation of a real accident. The VIRTHUMAN model is scaled in height, weight and age to represent precisely the pedestrian involved. Injury risk predicted by simulation is in correlation with data from real accident. Namely, injuries of head, chest and lower extremities are confirmed. Finally, mechanical response of developed vehicle model is compared to an FE model of the same vehicle in a pedestrian impact scenario.
2017-03-28
Technical Paper
2017-01-1272
Nick Parson, Jerome Fourmann, Jean-Francois Beland
Abstract One of the main applications for aluminum extrusions in the automotive sector is crash structures including crash rails, crash cans, bumpers and structural body components. The objective is usually to optimize the energy absorption capability for a given structure weight. The ability to extrude thin wall multi-void extrusions contributes to this goal. However, the alloy used also plays a significant role in terms of the ability to produce the required geometry, strength - which to a large extent controls the energy absorption capability and the “ductility” or fracture behavior which controls the strain that can be applied locally during crush deformation before cracking. This paper describes results of a test program to examine the crush behavior of a range of alloys typically supplied for automotive applications as a function of processing parameters including artificial ageing and quench rate.
2017-03-28
Technical Paper
2017-01-1301
Deepak A. Patil, Hrishikesh Buddhe
Abstract Frontal collisions account for majority of car accidents. Various measures have been taken by the automotive OEMs’ with regards to passive safety. Honeycomb meso-structural inserts in the front bumper have been suggested to enhance the energy absorption of the front structure which is favorable for passive safety. This paper presents the changes in energy absorption capacity of hexagonal honeycomb structures with varying cellular geometries; under frontal impact simulations. Honeycomb cellular metamaterial structure offers many distinct advantages over homogenous materials since their effective material properties depend on both, their constituent material properties and their cell geometric configurations. The effective static mechanical properties such as; the modulus of elasticity, modulus of rigidity and Poisson’s ratio of the honeycomb cellular meso-structures are controlled by variations in their cellular geometry.
2017-03-28
Technical Paper
2017-01-1303
Nobuhisa Yasuda, Shinichi Nishizawa, Maiko Ikeda, Tadashi Sakai
Abstract The purpose of this study is to validate a reverse engineering based design method for automotive trunk lid torsion bars (TLTB) in order to determine a free, or unloaded, shape that meets a target closed shape as well as a specified torque. A TLTB is a trunk lid component that uses torsional restoring force to facilitate the lifting open of a trunk lid, as well as to maintain the open position. Bend points and torque of a TLTB at a closed trunk position are specified by a car maker. Conventionally, a TLTB supplier determines bend points of the free shape by rotating the given bend points from a closed position around a certain axis to satisfy the specified torque at the closed position. Bend points of a deformed TLTB shape in the closed position often do not match the target bend points given by a car maker when designed by the conventional method, which can potentially cause interference issues with surrounding components.
2017-03-28
Technical Paper
2017-01-1298
Kamlesh Yadav, Abhishek Sinha, Rajdeep Singh Khurana
Abstract Vehicle Hood being the face of a passenger car poses the challenge to meet the regulatory and aesthetic requirements. Urge to make a saleable product makes aesthetics a primary condition. This eventually makes the role of structure optimization much more important. Pedestrian protection- a recent development in the Indian automotive industry, known for dynamics of cost competitive cars, has posed the challenge to make passenger cars meeting the regulation at minimal cost. The paper demonstrates structure optimization of hood and design of peripheral parts for meeting pedestrian protection performance keeping the focus on low cost of ownership. The paper discusses development of an in-house methodology for meeting Headform compliance of a flagship model of Maruti Suzuki India Ltd., providing detailed analysis of the procedure followed from introduction stage of regulatory requirement in the project to final validation of the engineering intent.
2017-03-28
Technical Paper
2017-01-1369
Abtine Tavassoli, Sam Perlmutter, Dung Bui, James Todd, Laurene Milan, David Krauss
Abstract Vision plays a key role in the safe and proper operation of vehicles. To safely navigate, drivers constantly scan their environments, which includes attending to the outside environment as well as the inside of the driver compartment. For example, a driver may monitor various instruments and road signage to ensure that they are traveling at an appropriate speed. Although there has been work done on naturalistic driver gaze behavior, little is known about what information drivers glean while driving. Here, we present a methodology that has been used to build a database that seeks to provide a framework to supply answers to various ongoing questions regarding gaze and driver behavior. We discuss the simultaneous recording of eye-tracking, head rotation kinematics, and vehicle dynamics during naturalistic driving in order to examine driver behavior with a particular focus on how this correlates with gaze behavior.
2017-03-28
Technical Paper
2017-01-1300
Raj Jayachandran, Bhimaraddi Alavandi, Matt Niesluchowski, Erika Low, Yafang Miao, Yi Zhang
Abstract An engine cooling system in an automotive vehicle comprises of heat exchangers such as a radiator, charge air cooler and oil coolers along with engine cooling fan. Typical automotive engine-cooling fan assembly includes an electric motor mounted on a shroud that encloses the radiator core. One of main drivers of fan shroud design is Noise, Vibration, and Harshness (NVH) requirements without compromising the main function of airflow for cooling requirements. In addition, there is also a minimum stiffness requirement of fan shroud which is often overlooked in arriving at optimal design of it. Low Speed Damageability (LSD) assessment of an automotive vehicle is about minimizing the cost of repair of vehicle damages in low speed crashes. In low speed accidents, these fan motors are subjected to sudden decelerations which cause fan motors to swing forward thereby damaging the radiator core. So designing fan shroud for low speed damageability is of importance today.
2017-03-28
Technical Paper
2017-01-1356
Rainer Neumann
Abstract In the last years we recognize a big amount of innovative solutions in the field of automotive lighting and especially in front lighting systems. The major target to improve the light performance and to make driving at night safe is most important. The measure for the performance rating and the ability to compare different systems with a technology neutral process seems to be quite difficult. The legislation is looking for a simplification with clearly defined parameters for the future. Experimental test series recently published causing a lot of discussions as the sensitivity of the aiming of the headlamps can cause completely different performance test results. The paper will report on a study with various production vehicles, all in the same way initially aimed and prepared for all type of technologies.
2017-03-28
Technical Paper
2017-01-1359
Michael Hamm
Abstract Headlamp performance has changed in the last 20 years significantly. Sealed beam lamps were replaced by VHAD, VOR and VOL types, but still the optical input in terms of tungsten filament based luminous flux remained more stable. With Xenon discharge lamps and now LED the performance of a headlamp may vary strongly and thus the optical performance. Various rating systems have been developed to assess the quality of lamps and light distribution, some based on laboratory based data, some based on static or dynamic street test drives with online measurements and assessments. Basic interest is to understand the performance of the light for a real driver. This article will discuss the influence parameters on achieving a repeatable and precise rating as well as the outer influence that creates glare and varying seeing distance. Mostly mechanical headlamp and car conditioning will influence the result as well as human factors like aiming precision and aiming tolerances.
2017-03-28
Technical Paper
2017-01-0423
Lei Yang, Qiang Li, Chuxuan Wang, Yunqing Zhang
Abstract This paper focuses on dynamic analysis and frame optimization of a FSAE racing car frame. Firstly, a Multi-Body Dynamic (MBD) model of the racing car is established using ADAMS/Car. The forces and torques of the mechanical joints between the frame and suspensions are calculated in various extreme working conditions. Secondly, the strength, stiffness and free vibration modes of the frame are analyzed using Finite Element Analysis (FEA). The extracted forces and torques in the first step are used as boundary conditions in FEA. The FEA results suggest that the size of the frame may be not reasonable. Thirdly, the size of the frame is optimized to achieve minimized weight. Meanwhile the strength and stiffness of the frame are constrained. The optimization results reveal that the optimization methodology is powerful in lightweight design of the frame.
2017-03-28
Technical Paper
2017-01-0363
Karthik Ramaswamy, Vinay L. Virupaksha, Jeanne Polan, Biswajit Tripathy
Abstract Expanded Polypropylene (EPP) foams are most commonly used in automotive applications for pedestrian protection and to meet low speed bumper regulatory requirements. In today’s automotive world the design of vehicles is predominantly driven by Computer Aided Engineering (CAE). This makes it necessary to have a validated material model for EPP foams in order to simulate and predict performance under various loading conditions. Since most of the automotive OEMs depend on local material suppliers for their global vehicle applications it is necessary to understand the variation in mechanical properties of the EPP foams and its effect on performance predictions. In this paper, EPP foams from three suppliers across global regions are characterized to study the inter-supplier variation in mechanical properties.
2017-03-28
Technical Paper
2017-01-1538
Jiaye Gan, Longxian Li, Gecheng Zha, Craig Czlapinski
Abstract This paper conducts numerical simulation and wind tunnel testing to demonstrate the passive flow control jet boat tail (JBT) drag reduction technique for a heavy duty truck rear view mirror. The JBT passive flow control technique is to introduce a flow jet by opening an inlet in the front of a bluff body, accelerate the jet via a converging duct and eject the jet at an angle toward the center of the base surface. The high speed jet flow entrains the free stream flow to energize the base flow, increase the base pressure, reduces the wake size, and thus reduce the drag. A baseline heavy duty truck rear view mirror is used as reference. The mirror is then redesigned to include the JBT feature without violating any of the variable mirror position geometric constraints and internal control system volume requirement. The wind tunnel testing was conducted at various flow speed and yaw angles.
2017-03-28
Technical Paper
2017-01-1308
Abhishek Softa, Anuj Shami, Rajdeep Singh Khurana
Abstract The fuel efficiency of a vehicle depends on multiple factors such as engine efficiency, type of fuel, aerodynamic drag, and tire friction and vehicle weight. Analysis of weight and functionality was done, to develop a lightweight and low-cost Roof rack rail. The Roof rack rail is made up of a lightweight material with thin cross section and has the design that allows the fitment of luggage carrier or luggage rack on the car roof. In starting this paper describes the design and weight contribution by standard Roof rack rail and its related parts. Secondly, the selection of material within different proposed options studied and a comparison of manufacturing and design-related factors. Thirdly, it has a description of the design of Roof rack rail to accommodate the luggage carrier fitment on the car roof. Moreover, optimizations of Roof rack rail design by continuous change in position, shape, and parts used.
2017-03-28
Technical Paper
2017-01-0143
Neelakandan Kandasamy, Steve Whelan
Abstract During cabin warm-up, effective air distribution by vehicle climate control systems plays a vital role. For adequate visibility to the driver, major portion of the air is required to be delivered through the defrost center ducts to clear the windshield. HVAC unit deliver hot air with help of cabin heater and PTC heater. When hot air interacts with cold windshield it causes thermal losses, and windshield act as sink. This process may causes in delay of cabin warming during consecutive cabin warming process. Thus it becomes essential to predict the effect of different windscreen defrost characteristics. In this paper, sensitivity analysis is carried for different windscreen defrosts characteristics like ambient conditions, modes of operation; change in material properties along with occupant thermal comfort is predicted. An integrated 1D/3D CFD approach is proposed to evaluate these conditions.
2017-03-28
Technical Paper
2017-01-1342
Nicolas Zagorski, Eric Nelson, Ari Caliskan, Allen Li
Abstract The use of structural optimization in the design of automotive structures is increasingly common. However, it is often challenging to apply these methods simultaneously for different requirements or model configurations. Multi-model optimization (MMO) aims to simplify the iterative design process associated with optimizing multiple parts or configurations with common design variables especially when conflicting requirements exist. In this paper, the use of MMO is demonstrated to evaluate the feasibility of an automotive door concept using an alternative material.
2017-03-28
Technical Paper
2017-01-1531
Keiichi Taniguchi, Akiyoshi Shibata, Mikako Murakami, Munehiko Oshima
Abstract This paper describes a study of drag reduction devices for production pick-up trucks with a body-on-frame structure using full-scale wind tunnel testing and Computational Fluid Dynamics (CFD) simulations. First, the flow structure around a pick-up truck was investigated and studied, focusing in particular on the flow structure between the cabin and tailgate. It was found that the flow structure around the tailgate was closely related to aerodynamic drag. A low drag flow structure was found by flow analysis, and the separation angle at the roof end was identified as being important to achieve the flow structure. While proceeding with the development of a new production model, a technical issue of the flow structure involving sensitivity to the vehicle velocity was identified in connection with optimization of the roof end shape. (1)A tailgate spoiler was examined for solving this issue.
2017-03-28
Technical Paper
2017-01-1341
Alok Kumar, Sandeep Sharma
Abstract Public conveyance such as a bus is a major contributor to socio - economic development of any geography. The international market for passenger bus needed to be made viable in terms of passenger comfort, minimum operational costs of the fleet by reduced fuel consumption through light weighting and yet robust enough to meet stringent safety requirements. Optimized design of bus body superstructure plays vital role in overall performance and safety, which necessitates to evaluate bus structure accurately during initial phase of design. This paper presents a robust methodology in numerical simulation for enhancing the structural characteristics of a bus body with simultaneous reduction in the weight by multi-material optimization while supplemented with sensitivity and robustness analysis. This approach ensures significant reduction in vehicle curb weight with promising design stiffness.
2017-03-28
Technical Paper
2017-01-1309
S. M. Akbar Berry, Hoda ElMaraghy, Johnathan Line, Marc Kondrad
Abstract Modularity in product architecture and its significance in product development have become an important product design topics in the last few decades. Several Product Modularity definitions and methodologies were developed by many researchers; however, most of the definitions and concepts have proliferated to the extent that it is difficult to apply one universal definition for modular product architecture and in product development. Automotive seat modular strategy and key factors for consideration towards modular seat design and assemblies are the main focus of this work. The primary objectives are focused on the most “natural segmentation” of the seat elements (i.e., cushions, backs, trims, plastics, head restraints, etc.) to enable the greatest ease of final assembly and greatest flexibility for scalable feature offerings around common assembly “hard-points.”
2017-03-28
Technical Paper
2017-01-1592
Jingdong Cai, Saurabh Kapoor, Tushita Sikder, Yuping He
Abstract In this research, active aerodynamic wings are investigated using numerical simulation in order to improve vehicle handling performance under emergency scenarios, such as tight cornering maneuvers at high speeds. Air foils are selected and analyzed to determine the basic geometric features of aerodynamic wings. Built upon the airfoil analysis, the 3-D aerodynamic wing model is developed. Then, the virtual aerodynamic wings are assembled with the 3-D vehicle model. The resulting 3-D geometry model is used for aerodynamic analysis based on numerical simulation using a computational fluid dynamics (CFD) software package. The CFD-based simulation data and the vehicle dynamic model generated are combined to study the effects of active aerodynamic wings on handling performance of high-speed vehicles. The systematic numerical simulation method and achieved results may provide design guidance for the development of active aerodynamic wings for high-speed road vehicles.
2017-03-28
Technical Paper
2017-01-1417
Enrique Bonugli, Richard Watson, Mark Freund, Jeffrey Wirth
Abstract This paper reports on seventy additional tests conducted using a mechanical device described by Bonugli et al. [4]. The method utilized quasi-static loading of bumper systems and other vehicle components to measure their force-deflection properties. Corridors on the force-deflection plots, for various vehicle combinations, were determined in order to define the system stiffness of the combined vehicle components. Loading path and peak force measurements can then be used to evaluate the impact severity for low speed collisions in terms of delta-v and acceleration. The additional tests refine the stiffness corridors, previously published, which cover a wide range of vehicle types and impact configurations. The compression phase of a low speed collision can be modeled as a spring that is defined by the force-deflection corridors. This is followed by a linear rebound phase based on published restitution values [1,5].
2017-03-28
Technical Paper
2017-01-1529
Nicholas Simmonds, John Pitman, Panagiotis Tsoutsanis, Karl Jenkins, Adrian Gaylard, Wilko Jansen
Abstract Cooling drag, typically known as the difference in drag coefficient between open and closed cooling configurations, has traditionally proven to be a difficult flow phenomenon to predict using computational fluid dynamics. It was seen as an academic yardstick before the advent of grille shutter systems. However, their introduction has increased the need to accurately predict the drag of a vehicle in a variety of different cooling configurations during vehicle development. This currently represents one of the greatest predictive challenges to the automotive industry due to being the net effect of many flow field changes around the vehicle. A comprehensive study is presented in the paper to discuss the notion of defining cooling drag as a number and to explore its effect on three automotive models with different cooling drag deltas using the commercial CFD solvers; STARCCM+ and Exa PowerFLOW.
2017-03-28
Technical Paper
2017-01-0507
Christian K. Riener, Anna-Elisabeth Raab, Gerald Luckeneder, Martin Rosner
Abstract Zinc-coatings with a substantial Magnesium content have been in use for over 30 years by now. Unlike the well-established Zn-Al-Mg coatings originating from Japan which have significant higher alloying contents applied mainly for building applications, this Zinc Magnesium Aluminum coating (ZM) is also specifically designed to meet the requirements of car manufacturers. The ZM coating introduced by voestalpine, corrender, is in the upper range of ZM-alloying compositions, which was set by VDA (German Association of the Automotive Industry) and SAE to be within 1.0 to 2.0 wt. % Mg and 1.0 to 3.0 wt. % Al. The properties of these “European” Zinc-Magnesium coatings are well comparable within this range. Compared to GI and GA ZM coatings exhibit significant advantages in the press shops with its excellent formability and reduced galling and powdering respectively which is a significant advantage for the forming of outer panels.
2017-03-28
Technical Paper
2017-01-1453
Sudip Sankar Bhattacharjee, Shahuraj Mane, Harsha Kusnoorkar, Sean Hwang, Matt Niesluchowski
Abstract Pedestrian protection assessment methods require multiple head impact tests on a vehicle’s hood and other front end parts. Hood surfaces are often lifted up by using pyrotechnic devices to create more deformation space prior to pedestrian head impact. Assessment methods for vehicles equipped with pyrotechnic devices must also validate that the hood deployment occurs prior to head impact event. Estimation of pedestrian head impact time, thus, becomes a critical requirement for performance validation of deployable hood systems. In absence of standardized physical pedestrian models, Euro NCAP recommends a list of virtual pedestrian models that could be used by vehicle manufacturers, with vehicle FEA (Finite Element Analysis) models, to predict the potential head impact time along the vehicle front end profile. FEA simulated contact time is used as target for performance validation of sensor and pyrotechnic deployable systems.
Viewing 61 to 90 of 4694