Criteria

Text:
Display:

Results

Viewing 1 to 30 of 4629
2017-03-28
Technical Paper
2017-01-1363
James F. Krier, Paul Weindorf
Modern automotive cockpit design trends have increased the number of displays and the locations and manner in how they are packaged. One theme in particular is the packaging of the displays in novel locations that may be marginal in terms of dynamic stability during road load vibrations. Examples of this include mirror or deployable displays that adjust their position in the vehicle. The image of the display may be partially or fully blurred during vibration events which can produce a poor HMI experience. This paper will present the results of a HMI study that that evaluated the readability of different sizes and contrast ratios of TFT color display graphics via jury evaluation during varying vibration acceleration and frequency levels in a controlled lab environment. The result of this study was identification of minimum natural frequencies and maximum acceleration levels for the display mounting structure as a function of display graphics size and contrast ratios.
2017-03-28
Technical Paper
2017-01-1366
Jeffrey Muttart, Swaroop Dinakar, Jeffrey Suway, Michael Kuzel, Timothy Maloney, Wayne Biever, Toby Terpstra, Tilo Voitel, David Cavanaugh, T.J. Harms
More than half all pedestrian fatalities occur at night. To address this problem, in the 1950s through 1970s Blackwell conducted considerable research that showed that a way to account for the limitations related to drivers’ expectancies at night would be to limit a driver’s time to view the forward roadway. The reduced information during the limited exposure time became a surrogate for the limited information available to on-road drivers at night. With the release of the SHRP-2 naturalistic database, we are able to see how drivers responded to in-road obstacles at night such as animals, bicyclists, pedestrians, and tree limbs. Using the naturalistic response data as a baseline, safe closed road recognition methodology was developed. The closed road study built upon the early nighttime recognition work by Blackwell, the observers were allowed to view the forward roadway for 1 or ¼ second.
2017-03-28
Technical Paper
2017-01-0508
Gabor Kiss, Yuya Ando, Martin Schifko
After the e-coating the paint on the surface is like a sponge and carry liquid which slowly drains off. The retain water carries about 5-10 liter for 100mm² BIW surface area. When the retain water drains off, residual liquids may areas at areas nobody is expecting. These liquids are potential causers in the oven either to destroy the corrosion protection mainly caused by boiling or may lead to bake drips. The density of the residual liquid is changing during the heating process in the oven. Depending on the evaporation of residual puddles and density change the total volume may increase although the weight is getting less. This is the critical situation which may lead to bake drips. In this talk we would outline our technology which allows to predict retain water behavior and the arising of bake drips successfully
2017-03-28
Technical Paper
2017-01-1357
Stefan G. Groetsch, Rainer Huber, Alexander Guenther, Ralf Staub
Osrams new high luminance chip technology (200 Mcd/m²)also offers new opportunities also in new SMT Concepts. Two of this new high performance SMT devices with 4 and 2 chips per unit enable a very compact headlamp prototype design. It is also combined with light guides for daytime running light and turn indicator. Emphasis in this paper lies also on the thermal design & solution ranging from selected PCB technology towards tuned air flow management.
2017-03-28
Technical Paper
2017-01-0505
Aditi Chavannavar
Polyurethane dispersions (PUDs) have seen rapid growth in recent years as alternatives to their solvent based analogs. They offer the advantages of enabling low VOC formulations while providing superior appearance and mechanical properties. Polyurethane-acrylic hybrids combine the advantages of a polyurethane dispersion with the benefits of an acrylic emulsion. This synergistic combination offers properties such as good hardness development and chemical resistance in addition to enhanced mechanical properties. In this paper, we discuss new PUD-acrylic hybrids that are NMP and solvent free, have a pendulum hardness of 100 oscillations compared to a standard acrylic emulsion that has 80; and offer excellent scratch and abrasion resistance equivalent to that of an acrylic system. In addition to these, the new polyurethane dispersions provide good haptic qualities and have excellent adhesion to plastic substrates such as ABS, PC, PMMA and PVC.
2017-03-28
Technical Paper
2017-01-1367
Jeffrey Aaron Suway, Jeffrey Muttart
Evaluating luminance values of a visual scene is of broad interest to accident reconstructionists, human factors professionals, and lighting experts. Currently, a common way to determine the actual luminance of an object is to locate the object on the subject roadway, at a substantially similar position, orientation and illuminance level and then measure the object with a luminance meter. This process can be extremely time consuming and could possibly require the roadway to be closed for safety purposes. Alternatively, the luminance can be calculated by measuring the reflectance of the subject surface and measuring the illuminance incident to the surface. After measuring the reflectance, it can then be used with any known illuminance to calculate the luminance of the object. This allows for an equivalently accurate measurement of luminance that is easier and quicker to make and could result in safer scene and vehicle inspections.
2017-03-28
Technical Paper
2017-01-1365
Michael Larsen
Regulation and certification requirements generally fall into 2 categories: self-certification and type approval. Self-certification requirements, currently used in the United States under Federal Motor Vehicle Safety Standards (FMVSS) regulations, must be objective and measurable with clear pass / fail criteria. On the other hand, Type Approval requirements, currently used in Europe under United Nations Economic Commission for Europe (UNECE) regulations, can be more general relying on the mandated 3rd party certification agency to appropriately interpret and apply the requirements based on the design and configuration of a vehicle. The use of a 3rd party is especially helpful when applying regulatory requirements for complex vehicle systems that operate dynamically, changing based on inputs from the surrounding environment.
2017-03-28
Technical Paper
2017-01-1304
Alejandro Rosas Vazquez, Fernando Paisano, Diego Santillan Gutierrez
For many years the use of in-mold fasteners has been avoided for various reasons including: not fully understand the load cases in the part, the fear for quality issues to occur, the need for servicing, or the lack of understanding the complexity of all failure modes. The most common solution has been the use of secondary operations to provide attachments, such as, screws, metal clips, heat staking, sonic welding or other methods which are ultimately a waste in the process and increase manufacturing costs. The purpose of this paper is to take the reader through a design process which allows for the design of in-molded attachment clips on plastic parts. The paper explores the design process for in-molded attachment clips starting with a design concept idea, testing the basic concept using a personal 3D printer, optimizing the design with physical tests and CAE analysis, and finally producing high resolution 3D prototypes for validation and tuning.
2017-03-28
Technical Paper
2017-01-1362
James Marr, William Neale, tomas owens, Steven Beier
In 2016, Virtual Reality equipment became both affordable and available to the public market in the form of the Oculus (tm) and Vive (tm). This equipment includes a headset and earphone system that create a fully immersive environment for the user, and provides added abilities over traditional visualization tools like 2-D animation. These abilities include choosing where one looks, and for how long, and a spatial and depth perception, and auditory experience that traditional 2 D visualization cannot achieve without the headgear. This paper presents an evaluation of the use of this equipment in several driving and pedestrian simulation environments for both daytime and nighttime scenarios. As part of the study, the VR environment was compared to photographs, videos, and 2D visualizations of each of the scenarios to evaluate the level of realism achieved by the VR equipment. This was done through feedback from participants and through quantitative comparison of imagery.
2017-03-28
Technical Paper
2017-01-1368
Jeffrey Aaron Suway, Steven Suway
Mapping the luminance values of a visual scene is of broad interest to accident reconstructionists, human factors professionals, and lighting experts. Such mappings are useful for a variety of purposes, including determining the effectiveness and appropriateness of lighting installations, and performing visibility analyses for accident case studies. One of the most common methods for mapping luminance is to use a spot type luminance meter. This requires individual measurements of all objects of interest and can be extremely time consuming. Luminance cameras can also be used to create a luminance map. While luminance cameras will map a scene’s luminance values more quickly than a spot luminance meter, commercially available luminance cameras typically require long capture times during low illuminance (up to 30 seconds). Previous work has shown that pixel intensity captured by consumer-grade digital still cameras can be calibrated to measure luminance.
2017-03-28
Technical Paper
2017-01-1306
Mike Ulizio, DeWitt Lampman, Mukesh Rustagi, Jason Skeen, Chester Walawender
Automotive manufacturers are requiring lightweight materials, including glazing materials to improve vehicle fuel economy mandates. Since windshields are one of the largest glazing surface areas, reducing the thickness of the glass in its construction can significantly provide weight savings opportunities. Automotive glazing design considerations must include overall glass strength, rigidity, acoustical and solar performance, which are affected by changes of glass thicknesses. This paper will evaluate those design considerations in the lightweighting of windshield glazings. One important design consideration for the windshield position is the impact of debris from the environment. Lightweighting of glazings in this vehicle position affects the way the construction typically reacts to stone impacts. Use of asymmetry in glass inner versus outer plies in laminated constructions can have a noticeable effect on the part’s impact performance and surface damage creation.
2017-03-28
Technical Paper
2017-01-1309
S. M. Akbar Berry, Hoda ElMaraghy PhD, Johnathan Line, Marc Kondrad
Modularity in product architecture and its importance in product development has become a critical discussion topic in the last few decades. Several Product Modularity definitions and prospects were discussed by many researchers, however, most of the definitions and concepts are proliferated such that it is difficult to apply one universal definition to every modular product architecture and in product development. Automotive seat modular design and key factors for consideration towards modular seat design and assemblies are the main objectives of this work. The primary objectives are focused around the most “natural segmentation” of the seat elements (i.e., cushions, backs, trims, plastics, head restraints, etc.) to enable the greatest ease of final assembly and greatest flexibility for scalable feature offerings around common assembly “hard-points.”
2017-03-28
Technical Paper
2017-01-1538
Jiaye Gan, Longxian Li, Gecheng Zha, Craig Czlapinski
This paper conducts numerical simulation and wind tunnel testing to study the passive jet boat tail(JBT) drag reduction flow control for a heavy duty truck rear view mirror. The JBT passive flow control technique is to introduce a flow jet by opening an inlet in the front of a bluff body, accelerate the jet via a converging duct and eject the jet at an angle toward the center of the base surface. The high speed jet flow entrains the free stream flow to energize the base flow, increase the base pressure, reduces the wake size, and thus reduce the drag. A baseline heavy duty truck rear view mirror is used as reference. The mirror is then redesigned to include the JBT feature without violating any of the variable mirror position geometric constraints and internal control system volume requirement. The wind tunnel testing was conducted at various flow speed and yaw angles.
2017-03-28
Technical Paper
2017-01-1369
Abtine Tavassoli, Sam Perlmutter, Dung Bui, James Todd, Laurene Milan, David Krauss
Vision plays a key role in the safe and proper operation of vehicles. To safely navigate, drivers constantly search their environments, which includes attending to the outside environment as well as the inside of the driver compartment. For example, a driver may monitor various instruments and road signage to ensure that they are traveling at an appropriate speed. Although there has been work done on naturalistic driver gaze behavior, little is known about what information drivers glean while driving. Here, we present a methodology that has been used to build a database that seeks to provide a framework to supply answers to various ongoing questions regarding gaze and driver behavior. We discuss the simultaneous recording of eye-tracking, head rotation kinematics, and vehicle dynamics during naturalistic driving in order to examine driver behavior with a particular focus on how this correlates with gaze behavior.
2017-03-28
Technical Paper
2017-01-1364
Kashif Ali, Vikas Kumar, Virat Kalra
Vehicle occupant packaging and interior and exterior body design determine the overall visibility that the driver of the vehicle has. Visibility is also dependent on technological features inside and outside the passenger cell like proximity sensors and cameras etc. The focus of this research is to find and analyze the visibility percentages, blind spot angles and blind spot areas using statistical data both individually and as vehicle class put together in order to justify the need for standardization of basic visibility enhancing aids. This study has an added significance considering the Indian road transportation statistics. On an average, 16 people die every hour due to road accidents in India. The aim is to focus on cases that affect visibility in low speed driving, coasting and reversing that causes loss to public and private property.
2017-03-28
Technical Paper
2017-01-1370
Hiroyuki Hara, Masaaki Kawauchi, Masayuki Katayama, Noriyuki Iwamori
In recent years, a camera monitor system which displays car-mounted camera pictures to in-vehicle displays is being developed. For a future vehicle cockpit, a field of view (FOV) support system with plural displays is assumed, which includes not only a meter and a center display, but also an HUD and the camera monitor system. As a consequence, an area occupied with displays in a driver’s FOV increases. In this situation, coexistence of “easiness in seeing” to tell a driver about dangers early and “annoying reduction” to avoid the driver’s perception drops is needed for in-vehicle displays. In order to meet this requirement, questionnaires (psychological indicator) have been conventionally used. However, here are two difficulties. One is that two items (“easiness in seeing” and “annoying”) are contrary, and the other is that the relation between a result of questionnaires and driver’s security is uncertain.
2017-03-28
Technical Paper
2017-01-1303
Nobuhisa Yasuda, Shinichi Nishizawa, Maiko Ikeda, Tadashi Sakai
The purpose of this study is to validate a reverse engineering based design method for automotive trunk lid torsion bars (TLTB) in order to determine a free shape that meets a target closed shape as well as a specified torque. A TLTB is a trunk lid component that uses torsional restoring force to facilitate the lifting open of a trunk lid, as well as to maintain the open position. Bend points and torque at a closed trunk position are specified by a car maker. Conventionally, a TLTB supplier determines bend points of the free shape by rotating the given bend points from a closed position around a certain axis to satisfy the specified torque at the closed position. Bend points of a deformed TLTB shape in the closed position often do not match the target bend points given by a car maker when designed by the conventional method, which can potentially cause interference issues with surrounding components.
2017-03-28
Technical Paper
2017-01-1356
Rainer Neumann
In the last years we recognize a big amount of innovative solutions in the field of automotive lighting and especially in front lighting systems. The major target to improve the light performance and to make driving at night safe is most important. The measure to for the performance rating and the ability to compare different systems with a technology neutral process seems to be quite difficult. The legislation is looking for a simplification with clearly defined parameters for the future. Experimental test series recently published causing a lot of discussions as the sensitivity of the aiming of the headlamps can cause completely different performance test results. The paper will report on a study with various production vehicles, all in the same way initially aimed and prepared for all type of technologies.
2017-03-28
Technical Paper
2017-01-0423
Lei Yang, Chuxuan Wang, Yunqing Zhang
The frame is an important subsystem for the FSAE race car, as it supports and connects to other subsystems. The weight, frequency and structure of the frame influence on the race car performances such as acceleration, handling, ride and durability. A rigid-flexible coupling FSAE race car model with flexible frame is implemented in ADAMS/car. By extracting the forces and torques of the joints which connect the frame to other subsystems in various race car extreme conditions, the loads transfer path from road and aerodynamic forces to the frame is discussed. The strength, stiffness and free mode analysis of the frame are carried out by means of Finite Element Analysis (FEA), the stress analysis and checking are under loads extracted from dynamic simulation with the rigid-flexible coupling FSAE race car model. According to the FEA results, an optimization of the frame is implemented by topological and size optimization.
2017-03-28
Technical Paper
2017-01-1305
Yucheng Liu, Jeremy Batte, Zachary Collins, Jennifer Bateman, John Atkins, Madelyn Davis, David Salley, Cindy L. Bethel, John Ball, Christopher Archibald
A robot mining system was designed to traverse the Martian chaotic terrain, excavate a minimum of 10 kg of Martian regolith and deposit the regolith into a collector bin within 10 minutes as part of the competition. A systems engineering approach was employed to conduct this design project. The designed mining robot consisted of two major components: (1) mechanical system and (2) control system. In this paper, design, prototyping, and assessment of the mechanical system are demonstrated. The final mining robot consists of an aluminum frame driven by four motors and wheels, and a scoop and lifting arm subsystem for collecting and depositing Martian regolith, which was powered by two computers and used two commercially-of-the-shelf sensors to navigate the Martian terrain. Engineering students and faculty from different engineering disciplines collaboratively participated in this effort.
2017-03-28
Technical Paper
2017-01-1511
Anton Kabanovs, Graham Hodgson, Andrew Garmory, Martin Passmore, Adrian Gaylard
The motivation for this paper is to consider the effect of rear end geometry on rear soiling using a representative generic SUV body. In particular the effect of varying the top slant angle is considered using both experiment and Computational Fluid Dynamics (CFD). Previous work has shown that slant angle has a significant effect on wake shape and drag and here we extend this to investigate the effect on rear soiling. It is hoped that this work can provide an insight into the likely effect of such geometry changes on the soiling of similarly shaped road vehicles. To increase the generality of results, and to allow comparison with previously obtained aerodynamic data, a 25% scale generic SUV model is used in the Loughborough University Large Wind Tunnel. UV doped water is sprayed from a position located at the bottom of the left rear tire to simulate the creation of spray from this tire.
2017-03-28
Technical Paper
2017-01-1360
John D. Bullough
Nighttime driving cannot be accomplished without vehicle headlighting. A growing body of evidence demonstrates the role of lighting on visual performance and in turn on nightttime driving safety in terms of crashes. Indirect impacts of lighting via comfort or other factors are less well understood, however. A two-part field study using real-world drivers of an instrumented vehicle was conducted to assess the potential role of oncoming headlight glare as a factor in driving behaviors that might be related to increased crash risks. In the first part of the study, drivers' behaviors when navigating through roadway intersections having different levels of crash risk were recorded in order to identify responses that were correlated with the risk level. In the second part, drivers were exposed to different levels of glare from oncoming headlights; several of the same risk-related behaviors identified in the first part of the study were exhibited.
2017-03-28
Technical Paper
2017-01-1634
Hui Sung Lee
When customers use a tailgate(or trunk), some systems such as power tailgate and smart tailgate have been introduced and implemented for improving convenience. However, they still have some problems in some use cases. Some people have to search for the outside button to open the tailgate, or they should take out the key and push a button. In some cases, they should move their leg or wait a few seconds which makes some people feel that it is a long time. In addition, they have to push the small button which is located on the inner trim in order to close the tailgate. This paper proposes a new tailgate control technology and systems based on acoustic patterns in order to solve some inconvenience. An acoustic user interaction (AUI) is a technology which responds to human's rubbing and tapping on a specific part analyzing the acoustic patterns. The AUI has been recently spotlighted in the automotive industry as well as home appliances, mobile devices, musical instruments, etc.
2017-03-28
Technical Paper
2017-01-0395
Xin Xie, Danielle Zeng, Boyang Zhang, Junrui Li, Liping Yan, Lianxiang Yang
Vehicle front panel is an interior part which have a major impact on the consumers’ experience of the vehicles. To keep a good appearance during long time aging period, most of the front panel is designed as a rough surface. Some types of surface defects on the rough surface can only be observed under the exposure of certain angled sun light. This brings great difficulties in finding surface defects on the production line. This paper introduces a novel polarized laser light based surface quality inspection method for the rough surfaces on the vehicle front panel. By using the novel surface quality inspection system, the surface defects can be detected real-timely even without the exposure under certain angled sun light. The optical fundamentals, theory derivation, experiment setup and testing result are shown in detail in this paper.
2017-03-28
Technical Paper
2017-01-1310
Harihar T. Kulkarni, Yu Wang, James Alanoly
The perceived quality of automotive closures (flushness and margin) is strongly affected by flanging and hemming of the outer panels and assembly respectively. To improve the quality of closures, the traditional hardware approach needs significant amount of time and costly die re-cuts and trials with prototype panels. Thus, such approach may delay the vehicle program and increase the overall investment cost. The proposed CAE methodology approach provides upfront design guidance to dies and panels, reduces time and cost associated with flanging and hemming trials necessary to improve overall quality of the closures. In this approach, as a first step, analytical formulae and design of experiments (DOE) are followed to estimate magnitude of design parameters of panels and dies to provide upfront design guidance.
2017-03-28
Technical Paper
2017-01-1308
Abhishek Softa, Anuj Shami, Rajdeep Singh Khurana
The automotive world is under constant challenge to go green or not harm our planet. Engineers are trying hard every day to meet this challenge. Increase in usage of personal transport is again a question for car producers. Every new car on road is increasing the carbon footprint. High fuel efficiency is one of the answers of this problem. Engineers all over the world are working on alternative and unconventional fuels, hybrid engines, fuel cells etc. As body designers we are solving this problem by new designs and usage of lightweight techniques. Car bodies are made lighter by optimizing old designs and by usage of different lightweight materials. In addition to this approach replacement of conventional material like steel by plastic (PU) is viable solution for this problem. This paper is focusing on the usage of new material and design concept. Areas of usage are roof rails that are used for improving vehicle aesthetics or as a load carrying structure or sometimes as both.
2017-03-28
Technical Paper
2017-01-0363
Karthik Ramaswamy, Vinay L. Virupaksha, Jeanne Polan, Biswajit Tripathy
EPP foams are most commonly used in automotive applications for pedestrian protection and to meet low speed bumper regulatory requirements. In today’s automotive world the design of vehicles are predominantly driven by CAE. This makes it necessary to have validated material model for EPP foams in order to simulate and predict performance under various loading conditions. Since most of the automotive OEMs depend on local material suppliers for their global vehicle applications it is necessary to understand the variation in mechanical properties of the EPP foams and their effect on performance predictions. In this paper, EPP foams from three suppliers across global regions are characterized to study the inter-supplier variation in mechanical properties. In order to understand the effect of inter-supplier variation on vehicle performance, LSDYNA rate dependent material model is developed and validated for low speed and pedestrian protection load cases.
2017-03-28
Technical Paper
2017-01-1417
Enrique Bonugli, Richard Watson, Mark Freund, Jeffrey Wirth
This paper reports on additional testing conducted using the test device described by Bonugli et al. (2014-01-1991). The method utilized quasi-static loading of bumper systems and other vehicle components to measure their force-deflection properties. Corridors on the force-deflection plots, for various vehicle combinations, were determined to define the system stiffness of the combined vehicle systems. Loading path and peak force measurements can then be used to evaluate the impact severity for low speed collisions in terms of delta-v and acceleration. The additional tests refine the stiffness corridors, previously published, which cover a wide range of vehicle types and impact configurations. The analysis of the collision models the compression phase of a low speed collision as a spring, the spring characteristics defined by the force-deflection corridors. This is followed by a linear rebound phase based on published restitution values.
2017-03-28
Technical Paper
2017-01-1463
Feng Zhu, Clifford C. Chou
A new design methodology based on data mining theory has been proposed and used in the vehicle crashworthiness design. The method allows exploring the big crash simulation dataset to discover the underlying complicated relationships between response and design variables, and derive design rules based on the structural response to make decisions towards the component design. An S-shaped beam is used as an example to demonstrate the performance of this method. A large amount of simulations are conducted and the results form a big dataset. The dataset is then mined to build a decision tree. Based on the decision trees, the interrelationship among the geometric design variables are revealed, and then the design rules are derived to produce the design cases with good energy absorbing capacity. The accuracy of this method is verified by comparing the data mining model prediction and simulation data.
2017-03-28
Technical Paper
2017-01-1592
Jingdong Cai, Saurabh Kapoor, Tushita Sikder, Yuping He
In this paper, active aerodynamic wings are investigated using numerical simulation in order to improve vehicle handling performance under high-speed cornering maneuvers. Air foils are selected and analyzed to determine the basic features of aerodynamic wings. Built upon the airfoil analysis, the 3D aerodynamic wing model is developed using a commercial software package, Siemens NX®. Then the virtual aerodynamic wings are assembled with the 3D vehicle model designed also using Siemens NX®. The resulting 3-D geometry model is used for aerodynamic analysis based on numerical simulation using a computational fluid dynamics (CFD) software package, ANSYS FLUENT®. The CFD-based simulation data and the multibody dynamic vehicle model generated CarSim®are combined to study the effects of active aerodynamic wings on handling performance of high-speed vehicles.
Viewing 1 to 30 of 4629