Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 1258
2017-10-08
Technical Paper
2017-01-2335
Tiantian Yang, Tie Wang, Jing Qiao, Ji Gao, Yizhuo Feng, Dandan Sun
Abstract The F-T diesel made from coal by Fischer-Tropsch synthesis (F-T) can be used as a clean alternative fuel of diesel engine. To alleviate the drawback of high cost and low viscosity of F-T diesel, the Methanol-Biodiesel -F-T diesel multiple fuel (MBFT) was prepared by adding low-cost methanol and high-viscosity biodiesel as modifiers. Considering the immiscibility between alcohols and hydrocarbons, this paper carried out a series of stability tests and found that n-decanol was the optimum co-solvent of MBFT. The MBFTs blended by biodiesel with the volume fraction of 10% (10% vol.) and methanol with varying proportions of 0%, 5%, 10% and 15% vol. were denoted as M0, M5, M10 and M15, respectively. The increasing methanol proportion caused the increase of the oxygen content in the blended fuels and the reduction of heat value, surface tension and cetane number. The influence of methanol proportion on combustion characteristics of turbo-charging engine was studied.
2017-10-08
Technical Paper
2017-01-2332
Tamara Ottenwaelder, Stefan Pischinger
Abstract In order to reduce engine out CO2 emissions it is a main subject to find new alternative fuels out of renewable sources. For this paper, several fuels were selected which can be produced out of biomass or with hydrogen which is generated directly via electrolysis with electricity from renewable sources. All fuels are compared to conventional diesel fuel and two diesel surrogates. It is well known that there can be a large effect of fuel properties on mixture formation and combustion, which may result in a completely different engine performance compared to the operation with conventional diesel fuels. Mixture formation and ignition behavior can also largely affect the pollutant formation. The knowledge of the combustion behavior is also important to design new engine geometries or implement new calibrations for an existing engine. The fuel properties of the investigated fuels comprise a large range, for example in case of the derived cetane number, from below 30 up to 100.
2017-10-08
Technical Paper
2017-01-2330
Leonardo Israel Farfan-Cabrera, Ezequiel Gallardo, José Pérez-González
Abstract Flouroelastomers and silicone rubbers are commonly employed in static and dynamic seals for automotive applications. In order to prevent premature failures and leakages caused by swelling and/or changes in their mechanical properties, materials for seals are selected according to their compatibility with the environment and fluids involved in the engine operation. Thus, in particular, the use of new fuels and additives in automotive engines requires the assessment of compatibility with common sealing elastomers to prevent failures. Currently, Jatropha oil is being used as a renewable source of fuel in diesel engines for electricity production, transport or agricultural mechanization in various countries. It is used either as biodiesel or as straight vegetable oil (SVO) since it has good heating power and provide exhaust gas with almost no sulfur or aromatic polycyclic compounds. However, the compatibility of elastomers with this SVO has not been investigated yet.
2017-10-08
Technical Paper
2017-01-2331
Amar Deep, Naveen Kumar, Harveer Singh Pali
Abstract The use of alternative fuel has many advantages and the main ones are its renewability, biodegradability with better quality exhaust gas emission, which do not contribute to raise the level of carbon dioxide in the atmosphere. The use of non-edible vegetables oils as an alternative fuels for diesel engine is accelerated by the energy crisis due to depletion of resources and increase in environmental problems. In Asian countries like India, great need of edible oil as a food so cannot use these oils as alternative fuels for diesel engine. However there are many issues related to the use of vegetable oils in diesel engine that is high viscosity, low calorific value, high self-ignition temperature etc. Jatropha curcas has been promoted in India as a sustainable substitute to diesel fuel. This research prepared micro emulsions of ethanol and Jatropha vegetable oil in different ratio and find out the physico-chemical parameters to compare with mineral diesel oil.
2017-10-08
Technical Paper
2017-01-2339
Pi-qiang Tan, Yuan Li
Abstract With increasingly severe atmospheric environmental problems, diesel car emissions have attracted broad attention for its main contribution to air pollutant. Alternative fuels become a hot research point in vehicle for rapidly consuming of fossil oil resources. Biodiesel and GTL (gas to liquid) fuels are two typical alternative fuels for diesel fuel. Low blend ratio (≤10%) biodiesel and GTL fuels can be used in a diesel engine without modifying the engine’s configuration. It is important to investigate the difference of low blend ratio biodiesel and GTL fuels used in the same diesel car and to find the optimum one. Gaseous and particle emissions from a light duty diesel car with B10 (10% biodiesel from cooking oil +90% diesel, v/v) and G10 (10% GTL fuel +90% diesel, v/v) was investigated. It was equipped with high pressure common rail system, cooled EGR and DOC and was tested on a chassis dynamometer under NEDC mode.
2017-10-08
Technical Paper
2017-01-2340
Shashank Mishra, Anand Krishnasamy
Abstract Biodiesel is a renewable, carbon neutral alternative fuel to diesel for compression ignition engine applications. Biodiesel could be produced from a large variety of feedstocks including vegetable oils, animal fats, algae, etc. and thus, vary significantly in their composition, fuel properties and thereby, engine characteristics. In the present work, the effects of biodiesel compositional variations on engine characteristics are captured using a multi-linear regression model incorporated with two new biodiesel composition based parameters, viz. straight chain saturation factor (SCSF) and modified degree of unsaturation (DUm). For this purpose, biodiesel produced from seven vegetable oils having significantly different compositions are tested in a single cylinder diesel engine at varying loads and injection timings. The regression model is formulated using 35 measured data points and is validated with 15 other data points which are not used for formulation.
2017-10-08
Technical Paper
2017-01-2390
Hongxue Zhao, Daliang Jing, Yinhui Wang, Shi-jin Shuai, Changle PANG
Abstract In this paper, the impacts of Aromatic and Olefin on the formation of poly-aromatic hydrocarbons (PAHs) in the gasoline direct injection (GDI) engine were experimentally and numerically investigated. The objective of this study is to describe the formation process of the soot precursors including one ring to four ring aromatics (A1-A4). In order to better understand the effects of the fuel properties on the formations of PAHs. Three types of fuels, namely base gasoline, gasoline with higher aromatics content, and gasoline with higher olefin content were experimentally studied. At the same time, these aspects were also numerically investigated in the CHEMKIN code by using premixed laminar flame model and surrogated fuels. The results show that higher aromatics content in gasoline will lead to much higher PAHs formation. Similar trend was also found in the gasoline with higher olefin content.
2017-10-08
Technical Paper
2017-01-2382
Tul Suthiprasert, Sirichai Jirawongnuson, Ekathai Wirojsakunchai, Tanet Aroonsrisopon, Krisada Wannatong, Atsawin Salee
Abstract The diesel dual fuel engine emits CH4 in the exhaust gas. This makes the exhaust gas more difficult to treat comparing to the exhaust gas from the conventional engine since CH4 requires high exhaust temperature to oxidize. In addition, another parameter such as exhaust flow rate, specie concentrations, especially CO, C3H8, and H2O have tremendous impact on Diesel Oxidation Catalyst performance on reducing CH4. This research is aimed to propose a kinetic model based on Langmuir Hinshelwood mechanisms that includes several terms such as CH4, C3H8, CO, O2, and H2O concentrations in order to gain a better understanding on the catalytic reaction and to provide a simulation with an accurate prediction. The model’s kinetic parameters are determined from the experiment by using synthetic gas. The composition of synthetic gas is simulated to be similar to the real exhaust gas from diesel dual fuel engines.
2017-10-08
Technical Paper
2017-01-2186
Lukas Urban, Michael Grill, Sebastian Hann, Michael Bargende
Abstract Engine Knock is a stochastic phenomenon that occurs during the regular combustion of spark ignition (SI) engines and limits its efficiency. Knock is triggered by an autoignition of local “hot spots” in the unburned zone, ahead of the flame front. Regarding chemical kinetics, the temperature and pressure history as well as the knock resistance of the fuel are the main driver for the autoignition process. In this paper, a new knock modeling approach for natural gas blends is presented. It is based on a kinetic fit for the ignition delay times that has been derived from chemical kinetics simulations. The knock model is coupled with an enhanced burn rate model that was modified for Methane-based fuels. The two newly developed models are incorporated in a predictive 0D/1D simulation tool that provides a cost-effective method for the development of natural gas powered SI engines.
2017-10-08
Technical Paper
2017-01-2191
Yachao Chang, Ming Jia, Yanzhi Zhang, Yaopeng Li, Weiwei Fan, MaoZhao Xie
Abstract Dimethyl ether (DME) attracts increasing attentions in recent years, because it can reduce the carbon monoxide (CO), unburned hydrocarbon (HC), and soot emissions for engines as the transportation fuel or the fuel additive. In this paper, a reduced DME oxidation mechanism is developed using the decoupling methodology. The rate constants of the fuel-related reactions are optimized using the non-dominated sorting genetic algorithm II (NSGA-II) to reproduce the ignition delay times in shock tubes and major species concentrations in jet-stirred reactors (JSR) over low-to-high temperatures. In NSGA-II, the range of the rate constants was considered to ensure the reliability of the optimized mechanism. Moreover, an improved objective function was proposed to maintain the faithfulness of the optimized mechanism to the original reaction mechanism, and a new method was presented to determine the optimal solution from the Pareto front.
2017-10-08
Technical Paper
2017-01-2192
Shenghui Zhong, Zhijun Peng, Yu Li, Hailin Li, Fan Zhang
Abstract A 3-D DNS (Three-Dimensional Direct Numerical Simulation) study with detailed chemical kinetic mechanism of methane has been performed to investigate the characteristics of turbulent premixed oxy-fuel combustion in the condition relevant to Spark Ignition (SI) engines. First, 1-D (one-dimensional) laminar freely propagating premixed flame is examined to show a consistent combustion temperature for different dilution cases, such that 73% H2O and 66% CO2 dilution ratios are adopted in the following 3-D DNS cases. Four 3-D DNS cases with various turbulence intensities are conducted. It is found that dilution agents can reduce the overall flame temperature but with an enhancement of density weighted flame speed. CO2 dilution case shows the lowest flame speed both in turbulent and laminar cases.
2017-10-08
Technical Paper
2017-01-2194
Mateusz Pucilowski, Mehdi Jangi, Sam Shamun, Martin Tuner, Xue-Song Bai
Abstract Heavy-duty direct injection compression ignition (DICI) engine running on methanol is studied at a high compression ratio (CR) of 27. The fuel is injected with a common-rail injector close to the top-dead-center (TDC) with two injection pressures of 800 bar and 1600 bar. Numerical simulations using Reynold Averaged Navier Stokes (RANS), Lagrangian Particle Tracking (LPT), and Well-Stirred-Reactor (WSR) models are employed to investigate local conditions of injection and combustion process to identify the mechanism behind the trend of increasing nitrogen oxides (NOx) emissions at higher injection pressures found in the experiments. It is shown that the numerical simulations successfully replicate the change of ignition delay time and capture variation of NOx emissions.
2017-10-08
Technical Paper
2017-01-2193
Andreas Nygren, Anders Karlsson
Abstract When developing new combustion concepts, CFD simulations is a powerful tool. The modeling of spray formation is a challenging but important part when it comes to CFD modelling of non-premixed combustion. There is a large difference in the accuracy and robustness among different spray models and their implementation in different CFD codes. In the work presented in this paper a spray model, designated as VSB2 has been implemented in OpenFOAM. VSB2 differ from traditional spray models by replacing the Lagrangian parcels with stochastic blobs. The stochastic blobs consists of a droplet size distribution rather than equal sized droplets, as is the case with the traditional parcel. The VSB2 model has previously been thoroughly validated for spray formation and combustion of n-heptane. The aim of this study was to validate the VSB2 spray model for ethanol spray formation and combustion as a step in modelling dual-fuel combustion with alcohol and diesel.
2017-10-08
Technical Paper
2017-01-2230
Nizar F.O. Al-Muhsen, Guang Hong
Abstract Ethanol as a renewable fuel has been used widely in vehicles. Dual fuel injection is one of the new techniques in development for increasing the engine’s thermal efficiency and reducing the pollutant emissions. This study reports experimental investigation to the dual ethanol fuel injection with a focus on the effect of spark timing on the engine performance at different volumetric ratios of ethanol directly injected to ethanol port injected. Experiments were conducted on a single cylinder 250cc spark ignition engine at two engine loads and 3500 RPM. The spark timing was varied from 15 to 42 CAD bTDC at the light load and from 15 to 32 CAD bTDC at the medium load, while the volumetric ratio of direct injection (DI%) was varied from 0% to 100%.
2017-10-08
Technical Paper
2017-01-2238
Ripudaman Singh, Travis Burch, George Lavoie, Margaret Wooldridge, Mohammad Fatouraie
Abstract Numerous studies have demonstrated the benefits of ethanol in increasing the thermal efficiency of gasoline-fueled spark ignition engines via the higher enthalpy of vaporization and higher knock resistance of ethanol compared with gasoline. This study expands on previous work by considering a split fuel injection strategy with a boosted direct injection spark ignition engine fueled with E0 (100% by volume reference grade gasoline; with research octane number = 91 and motor octane number = 83), E100 (100% by volume anhydrous ethanol), and various splash-blends of the two fuels. Experiments were performed using a production 3-cylinder Ford Ecoboost engine where two cylinders were de-activated to create a single-cylinder engine with a displacement of 0.33 L. The engine was operated over a range of loads with boosted intake manifold absolute pressure (MAP) from 1 bar to 1.5 bar.
2017-10-08
Technical Paper
2017-01-2256
Muhammad Umer Waqas, Kai Morganti, Jean-Baptiste Masurier, Bengt Johansson
Abstract The blending behavior of ethanol in five different hydrocarbon base fuels with octane numbers of approximately 70 and 84 was examined under Spark-Ignited (SI) and Homogeneous Charge Compression Ignited (HCCI) operating conditions. The Blending octane number (BON) was used to characterize the blending behavior on both a volume and molar basis. Previous studies have shown that the blending behavior of ethanol generally follows several well-established rules. In particular, non-linear blending effects are generally observed on a volume basis (i.e. BON > RON or MON of pure ethanol; 108 and 89, respectively), while linear blending effects are generally observed on a molar basis (i.e. BON = RON or MON of pure ethanol). This work firstly demonstrates that the non-linear volumetric blending effects traditionally observed under SI operating conditions are also observed under HCCI operating conditions.
2017-10-08
Technical Paper
2017-01-2277
Xiao Peng, Han Wu, Chia-Fon Lee, Qianbo Sun, Fushui Liu
Abstract Methanol has been regarded as a potential transportation fuel due to its advanced combustion characteristics and flexible source. However, it is suffering from misfire and high HC emissions problems under cold start and low load conditions either on methanol SI engine or on methanol/diesel dual fuel engine. Hydrogen is a potential addition that can enhance the combustion of methanol due to its high flammability and combustion stability. In the current work, the effect of hydrogen fraction on the laminar flame characteristics of methanol- hydrogen-air mixture under varied equivalence ratio was investigated on a constant volume combustion chamber system coupled with a schlieren setup. Experiments were performed over a wide range of equivalence ratio of the premixed charge, varied from 0.8 to 1.4, as well as different hydrogen fraction, 0%, 5%, 10%, 15% and 20% (n/n). All tests were carried out at fixed temperature and pressure of 400K and 0.1MPa.
2017-10-08
Technical Paper
2017-01-2278
Zhiwei Deng, Ang Li, Lei Zhu, Zhen Huang
Abstract In-cylinder thermochemical fuel reforming (TFR) in spark ignition natural gas engine was developed to reveal that thermochemical fuel reforming could increase H2 and CO concentration in reformed gas, leading to an increase of thermal efficiency and engine performance. Moreover, ethanol enrichment has been proved to have great potential to optimize TFR performance. In order to explain TFR phenomenon chemically, methane oxidation experiments were conducted in a laminar flow reactor with addition of ethanol and methanol at equivalent ratios of 1.5, 1.7, 1.9 and 2.1 from 948K to 1098K at atmospheric pressure. Experimental results showed that methanol have great ability to facilitate the oxidation of methane than that of ethanol. Meanwhile, the degree of methane conversion became more significantly as the equivalent ratio increased. Kinetic analysis of oxidation of methane with alcohol enrichment in a plug flow model was also conducted in this study.
2017-10-08
Technical Paper
2017-01-2268
Zhanming Chen, Long Wang, Tiancong Zhang, Qimeng Duan, Bo Yang
Abstract Engines fuelled with Liquefied natural gas (LNG) have been widely used in the heavy-duty vehicles. However, they suffer from poor combustion performance and flame instability under fuel-lean condition. In this work, experiments were performed on a turbo-charged, spark-ignition engine fuelled with natural gas (NG) and methanol. The combustion characteristics such as in-cylinder pressure, heat release rate (HRR), burned mass fraction (BMF), ringing/knock intensity (RI), ignition delay, centroid of HRR, and coefficient of variation (COV) of indicated mean effective pressure (IMEP) were analyzed under light load (brake mean effective pressure=0.3876 MPa) with different methanol substitution rates (MSR=0%, 16%, 34%, 46%). The experimental results showed that combustion phase advanced with the increase in MSR due to faster burning velocity of methanol. Knock only occurred at MSR=46%, 2000 rpm.
2017-10-08
Technical Paper
2017-01-2269
Shijun Dong, Xiaobei Cheng, Biao Ou, Can Yang, Zhaowen Wang, Fumin Pan
Abstract Based on a composed PRF/ethanol/PAH mechanism, simulations were conducted to investigate the combustion characteristics of n-heptane spray under premixed ethanol/air and iso-octane/air atmosphere in a combustion vessel. The effects of premixed ethanol and iso-octane on ignition delay, important soot precursors and soot volume fraction of n-heptane spray were studied. Also, simulated results with and without considering the cooling effects of premixed fuel vaporization were compared. When the cooling effect of premixed fuel vaporization was not considered, simulations showed that premixed ethanol could increase the ignition delay of n-heptane spray at ambient temperatures below 850K. However, premixed iso-octane showed little inhibition effect on ignition of n-heptane spray. Also, it was found that both premixed ethanol and iso-octane contributed to faster ignition under high ambient temperatures.
2017-10-08
Technical Paper
2017-01-2297
Thomas Dubois, Lidwine Abiad, Pauline Caine
Abstract As it is the case for Diesel engines, the Gasoline Direct Injection engines are using higher and higher injection pressures. The state of the art gasoline Direct Injection (GDI) engines are currently using injection pressures as high as 500 bar. A lot of work is also currently ongoing on Gasoline Compression Ignition (GCI) engines which use even higher injection pressures (above 1 000 bar). A high injection pressure means that a high pressure pump has to be used and so, proper lubricity has to be brought by the fuel. In the mean time the use of biofuels is increasing and several studies have shown the positive impact of ethanol on the energy consumption of gasoline engines mainly thru an octane number effect.
2017-10-08
Technical Paper
2017-01-2289
Chunze Cen, Han Wu, Chia-Fon Lee, Shuxin Hao, Fushui Liu, Yikai Li
Abstract Droplets impacting onto the heated surface is a typical phenomenon either in CI engines or in GDI SI engines, which is regarded significant for their air-fuel mixing. Meanwhile, alcohols including ethanol and butanol, has been widely studied as internal combustion engine alternative fuels due to their excellent properties. In this paper, under different component ratio conditions, the ethanol-butanol droplet impacting onto the heated aluminum surface has been studied experimentally. The falling height of the droplets were set at 5cm. A high-speed camera, set at 512×512pixels, 5000 fps and 20 μs of exposure time, was used to visualize the droplet behavior impinging onto the hot aluminum surface. The impact regimes of the binary droplet were identified. The result showed that the Leidenfrost temperature of droplets was affected by the ratio of ethanol to butanol. The higher the content of butanol in the droplet, the higher the Leidenfrost temperature.
2017-10-08
Technical Paper
2017-01-2316
Yuhan Huang, Guang Hong, John Zhou
Abstract Ethanol direct injection (EDI) has great potential in facilitating the downsizing technologies in spark ignition engines due to its strong anti-knock ability. The fuel temperature may vary widely from non-evaporating to flash-boiling sprays in real engine conditions. In this study, a CFD spray model was developed in the ANSYS Fluent environment, which was capable to simulate the EDI spray and evaporation characteristics under non-evaporating, transition and flash-boiling conditions. The turbulence was modelled by the realizable k-ε model. The Rinzic heterogeneous nucleation model was applied to simulate the primary breakup droplet size at the nozzle exit. The secondary breakup process was modelled by the Taylor Analogy Breakup model. The evaporation process was modelled by the Convection/Diffusion Controlled Model. The droplet distortion and drag, collision and droplet-wall interaction were also included.
2017-10-08
Technical Paper
2017-01-2326
Ang Li, Zhiwei Deng, Lei Zhu, Zhen Huang
Abstract In the present study a novel surrogate model for biodiesel including methyl decanoate (MD) and methyl crotonate (MC) was proposed and validated. In the binary mixture of surrogate fuel, MD was chosen to represent saturated methyl esters, which exhibited great low-temperature reactivity with typical negative temperature-coefficient (NTC) behavior and MC represented unsaturated components in real biodiesel, which was mainly responsible for soot formation and evolution. The proportion of MD and MC was determined by matching the characteristics such as derived cetane number (DCN), molecular weight (MW), atom number, H/C ratio and unsaturated degree. All of the criterions were calculated by the least square principles and the calculated surrogate of biodiesel was comprised of 92% MD and 8% MC in mole fraction. Furthermore, detailed kinetic model of the surrogate fuel was constructed and developed with modifications, which was composed of 2918 species and 9164 reactions.
2017-10-08
Technical Paper
2017-01-2325
Midhat Talibi, Paul Hellier, Nicos Ladommatos
Abstract The conversion of lignocellulosic biomass to liquid fuels presents an alternative to the current production of renewable fuels for IC engines from food crops. However, realising the potential for reductions in net CO2 emissions through the utilisation of, for example, waste biomass for sustainable fuel production requires that energy and resource inputs into such processes be minimised. This work therefore investigates the combustion and emission characteristics of five intermediate platform molecules potentially derived from lignocellulosic biomass: gamma-valerolactone (GVL), methyl valerate, furfuryl alcohol, furfural and 2-methyltetrahydrofuran (MTHF). The study was conducted on a naturally aspirated, water cooled, single cylinder spark-ignition engine. Each of the platform molecules were blended with reference fossil gasoline at 20 % wt/wt.
2017-10-08
Technical Paper
2017-01-2327
Joonsik Hwang, Choongsik Bae, Chetankumar Patel, Avinash Kumar Agarwal, Tarun Gupta
Abstract Fuel atomization and air-fuel mixing processes play a dominant role on engine performance and emission characteristics in a direct injection compression ignition engine. Understanding of microscopic spray characteristics is essential to predict combustion phenomena. The present work investigated near nozzle flow and atomization characteristics of biodiesel fuels in a constant volume chamber. Waste cooking oil, Jatropha, and Karanja biodiesels were applied and the results were compared with those of conventional diesel fuel. The tested fuels were injected by a solenoid injector with a common-rail injection system. A high-speed camera with a long distance microscopic lens was utilized to capture the near nozzle flow. Meanwhile, Sauter mean diameter (SMD) was measured by a phase Doppler particle analyzer to compare atomization characteristics.
2017-10-08
Technical Paper
2017-01-2321
Timothy H. Lee, Han Wu, Alan Hansen, Tonghun Lee, Gang Li
Abstract Bio-butanol has been considered as a promising alternative fuel for internal combustion engines due to its advantageous physicochemical properties. However, the further development of bio-butanol is inhibited by its high recovery cost and low production efficiency. Hence, the goal of this study is to evaluate two upstream products from different fermentation processes of bio-butanol, namely acetone-butanol-ethanol (ABE) and isopropanol-butanol-ethanol (IBE), as alternative fuels for diesel. The experimental comparison is conducted on a single-cylinder and common-rail diesel engine under various main injection timings (MIT) and equivalent engine load (EEL) conditions. The experimental results show that ABE and IBE significantly affect the combustion phasing. The start of combustion (SOC) is retarded when ABE and IBE are mixed with diesel. Furthermore, the ABE/IBE-diesel blends are more sensitive to the changes in MIT compared with that of pure diesel.
2017-10-08
Technical Paper
2017-01-2320
George S. Dodos, Chrysovalanti E. Tsesmeli, Iraklis Zahos Siagos, Theodora Tyrovola, Dimitrios Karonis, Fanourios Zannikos
Abstract FAME is the most common renewable component of conventional automotive diesel. Despite the advantages, biodiesel is more susceptible to oxidative deterioration and due to its chemical composition as well as its higher affinity to water, is considered to be a favorable substrate for microorganisms. On the other hand, apart from biodiesel, alcohols are considered to be promising substitutes to conventional diesel fuel because they can offer higher oxygen concentration leading to better combustion characteristics and lower exhaust emissions. More specifically, n-butanol is a renewable alcohol demonstrating better blending capabilities and properties when it is added to diesel fuel, as its composition is closer to conventional fuel, when compared ethanol to for example. Taking into consideration the alleged disinfectant properties of alcohols, it would be interesting to examine also the microbial stability of blends containing n-butanol in various concentrations.
2017-10-08
Technical Paper
2017-01-2397
Zhan Gao, Lei Zhu, Xinyao Zou, Chunpeng Liu, Zhen Huang
Abstract Biodiesel is a potential alternative fuel which can meet the growing need for sustainable energy. Partially premixed compression ignition (PPCI) is an important low-temperature combustion strategy to reduce NOx and soot emission of diesel engines. To investigate partial premixing impact on particle formation in flames of biodiesel or biodiesel surrogates, an experimental study was performed to compare the soot morphology and nanostructure evolution in laminar co-flow methyl decanoate non-premixed flame (NPF) and partially premixed flame (PPF). The thermophoretic sampling technique was used to capture particles along flame centerlines. Soot morphology information and volume fraction were obtained from TEM analysis and nanostructure features were evaluated by HR-TEM. With primary equivalence ratio of 19, gas temperature of PPF is higher along flame centerline compared with NPF. The results show an initially stronger sooting tendency in PPF at lower positions.
2017-10-08
Technical Paper
2017-01-2396
Fushui Liu, Yang Hua, Han Wu, Xu He, Ning Kang
Abstract Soot emission, known as PM (particulate matter), is becoming a big issue for GDI engines as the emission regulations being increasingly stricter. It is found that ethanol, as an oxygenated bio-fuel, can reduce the soot emission when added to gasoline. In order to fully understand the effect of ethanol on soot reducing, the soot characteristics of ethanol/gasoline blends were studied on laminar diffusion flames. In this experiment, the blending ratio of ethanol/gasoline was set as E0/20/40/60/80. Considering the carbon content decreasing due to ethanol addition, carbon mass flow rate was remained constant. The two-dimensional distributions of soot volume fraction were measured quantitatively by using two-color laser induced incandescence technique. The results showed that ethanol is able to decrease the soot significantly, but the effect of ethanol on soot reduction is weakened with the increasing ethanol ratio.
Viewing 1 to 30 of 1258