Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 532
2017-10-08
Technical Paper
2017-01-2326
Ang Li, Zhiwei Deng, Lei Zhu, Zhen Huang
In the present study a novel surrogate model for biodiesel including methyl decanoate (MD) and methyl crotonate (MC) was proposed and validated. In the binary mixture of surrogate fuel, MD was chosen to represent saturated methyl esters, which exhibited great low-temperature reactivity with typical negative temperature-coefficient (NTC) behavior and MC represented unsaturated components in real biodiesel, which was mainly responsible for soot formation and evolution. The proportion of MD and MC was determined by matching the characteristics such as derived cetane number (DCN), molecular weight (MW), atom number, H/C ratio and unsaturated degree. All of the criterions were calculated by the least square principles and the calculated surrogate of biodiesel was comprised of 92% MD and 8% MC in mole fraction. Furthermore, detailed kinetic model of the surrogate fuel was constructed and developed with modifications, which was composed of 2918 species and 9164 reactions.
2017-10-08
Technical Paper
2017-01-2397
Zhan Gao, Lei Zhu, Xinyao Zou, Chunpeng Liu, Zhen Huang
Biodiesel is a potential alternative fuel which can meet the growing need for sustainable energy. Partially premixed compression ignition (PPCI) is an important low-temperature combustion strategy to reduce NOx and soot emission of diesel engines. To investigate partial premixing impact on particle formation in flames of biodiesel or biodiesel surrogates, an experimental study was performed to compare the soot morphology and nanostructure evolution in laminar co-flow methyl decanoate non-premixed flame (NPF) and partially premixed flame (PPF). The thermophoretic sampling technique was used to capture particles along flame centerlines. Soot morphology information and volume fraction were obtained from TEM analysis and nanostructure features were evaluated by HR-TEM. With primary equivalence ratio of 19, gas temperature of PPF is higher along flame centerline compared with NPF. The results show an initially stronger sooting tendency in PPF at lower positions.
2017-10-08
Technical Paper
2017-01-2327
Joonsik Hwang, Choongsik Bae, Chetankumar Patel, Avinash Kumar Agarwal, Tarun Gupta
Fuel atomization and air-fuel mixing processes play a dominant role on engine performance and emission characteristics in a direct injection compression ignition engine. Understanding of microscopic spray characteristics is essential to predict combustion phenomena. The present work investigates the atomization and mixing characteristics of biodiesel fuels in a constant volume combustion chamber. Waste cooking oil, Jatropha, and Karanja biodiesels were applied and the results were compared with those of diesel fuel. The tested fuels were injected by a common-rail injection system with injection pressures of 40, 80, and 120 MPa. A high-speed camera with a long distance microscopic lens was utilized to capture the near nozzle flow characteristics. Sauter mean diameter (SMD) was measured by a phase doppler particle analyzer.
2017-10-08
Technical Paper
2017-01-2339
Pi-qiang Tan, Yuan Li
With increasingly severe atmospheric environmental problems, diesel car emissions have attracted broad attention for its main contribution to air pollutant. Alternative fuels become a hot research point in vehicle for rapidly consuming of fossil oil resources. Biodiesel and GTL (gas to liquid) fuels are two typical alternative fuels for diesel fuel. Low blend ratio (≤10%) biodiesel and GTL fuels can be used in a diesel engine without modifying the engine’s configuration. It is important to investigate the difference of low blend ratio biodiesel and GTL fuels used in the same diesel car and to find the optimum one. Gaseous and particle emissions from a light duty diesel car with B10 (10% biodiesel from cooking oil +90% diesel, v/v) and G10 (10% GTL fuel +90% diesel, v/v) was investigated. It was equipped with high pressure common rail system, cooled EGR and DOC and was tested on a chassis dynamometer under NEDC mode.
2017-10-08
Technical Paper
2017-01-2340
Shashank Mishra, Anand Krishnasamy
Owing to a rapid rise in global energy demand in various sectors including power, agriculture and transport, there is a tremendous increase in demand for conventional diesel fuel. Biodiesel are emerging as renewable alternative to diesel with better emission characteristics (except nitric oxides). The biodiesel could be produced from various feedstock including vegetable oils, animal fats, algae, etc. and thus, vary significantly in their fatty acid methyl ester composition and physico-chemical properties and thereby, engine performance and emissions. In the present work, the effects of biodiesel compositional variations in conjunction with changes in engine load and injection timings are captured using a multi-linear regression model which is applied to predict performance and emission characteristics of a single cylinder diesel engine.
2017-09-19
Technical Paper
2017-01-2136
Almuddin Rustum Sayyad, Pratik Salunke, Sangram Jadhav
The objective of this work is to optimize the operating parameters of the Direct Injection single cylinder (5.2 kw) CI engine with respect to Brake Thermal Efficiency (BTHE), Hydro carbons (HC) and Carbon dioxide (CO2). For this investigation, we used Simarouba Biodiesel as an alternate fuel for diesel fuel which possesses low cetane number which is not sufficient to operate existing diesel engine. However, this could be combined with the diesel fuel in the form of blends. For this investigation four levels and four parameters were selected viz. Injection Pressure (IP), Fuel Fraction (FF), Compression Ratio (CR) and Injection Timing (Before TDC). Taguchi Method is used for minimizing the number of experiments and Multiple Regression Analysis is used to find the optimum condition. Three outputs variables such as; Brake Thermal Efficiency (BTHE), content of HC particles and CO2 in the emission are measured and considered its influence on CI Engine performance.
2017-09-19
Technical Paper
2017-01-2137
Dnyaneshwar V. Kadam, Sangram D. Jadhav
Vibration is the most considerable factor in dynamics of machinery. Vibration causes unfavorable effects on engine components and may reduce the life of engine. The conventional fossil fuel sources are limited in the world. The dependency on diesel should be reduced by using biodiesel as an alternative fuel in next few years. The input parameters are affected on engine performance and emission. The present study mainly focuses on an optimization of vibrations, performance and emission using Taguchi and multiple regression analysis for biodiesel as a fuel. The test was performed on single cylinder, four-stroke, diesel engine with VCR. Taguchi method is used to prepare the design of experiment of L16 array for minimizing number of experiments and multiple regression analysis for finding the best relationship between the input and output parameters. The selected input parameters are: fuel fraction, compression ratio, injection pressure and injection timing.
2017-08-18
Journal Article
2017-01-9377
Senthil Ramalingam, Silambarasan Rajendran
Abstract Biodiesel as an alternative diesel fuel prepared from vegetable oils or animal fats has attracted more and more attention because of its renewable and environmental friendly nature. Many recent studies shows that 20% proportion of biodiesel-diesel blend (B20) can substantially reduce the hydrocarbon (HC), carbon monoxide (CO) and smoke emissions. However, there is a slight increase in NOx emission for B20 than that of diesel and it was a barrier to market expansion. The addition of antioxidant additives was the most effective method to mitigate the NOx emission. Hence, in this paper experimental investigation has been carried out to mitigate the NOx emission in Annona biodiesel (A20) operated diesel by addition of antioxidant additives. The antioxidant additives such as p-phenylenediamine, A-tocopherol acetate and L-ascorbic acid were used in the present investigation. In recent years Annona biodiesel has been considered as potential novel renewable energy source in India.
2017-07-10
Technical Paper
2017-28-1957
Anant Parashar, Thangaraja Jeyaseelan
Oxygenated fuels like biodiesel and ethanol possess prominent characteristics as an alternative fuel for diesel engines. However, these fuels are corrosive in nature and hygroscopic. This might results in material incompatibility with the fuel supply system of an automobile. The filter consists of a filter membrane that that traps the contaminants from the fuel and prevents them from entering into the combustion chamber. The operational hours of the filter membrane depend on the quality of fuel employed. The conventional filter is designed for fossil diesel operation and hence the filter life might degrade earlier in the case of oxygenated fuels like biodiesel or ethanol. The proposed work focuses on the impact of oxygenated fuels, viz. karanja and ethanol blended karanja biodiesel on the filter membrane and its flow characteristics. Two tests, pressure difference and contaminant retention test are carried out in accordance with Japanese standard D1617:1998.
2017-07-10
Technical Paper
2017-28-1975
ANIL P M, K Nantha Gopal, B. Ashok
Abstract The present research deals with study of pongamia oil methyl ester as a lubricant by blending with anti-wear additive ZDDP. The experimental work carried in this work aims to investigates the friction and wear characteristics by blending zinc diakyldithio phosphates (ZDDP) with pongamia oil methyl ester as lubricant under various loading conditions and temperatures. The coefficient of friction and wear scar depth were determined using pongamia biodiesel blended with 0.3%, 0.6% and 1 % ZDDP by concentration through high frequency reciprocating wear testing machine for 2 h duration. The reciprocating wear tests were performed on an engine liner-piston ring contact under the loads of 40 N, 60 N and 80 N for 2 h duration at temperatures of 100°C, 125°C 150° C with 10 Hz oscillation frequency. The addition of ZDDP with pongamia biodiesel showed marginal reduction in friction coefficient and wear scar depth under all loads and temperatures.
2017-03-28
Technical Paper
2017-01-1731
Manida Tongroon, Amornpoth Suebwong, Mongkont Kananont, Jirasak Aunchaisri, Nuwong Chollacoop
Abstract Derived from palm Fatty Acid Methyl Ester (FAME), high quality biodiesel called H-FAME has been introduced in order to increase its percentage blended with diesel. Due to monoenen-rich FAME by partial hydrogenation process, H-FAME is superior oxidation and thermal stability. In the current study, the effects of 20 percent of high quality biodiesel blended with diesel (B20) on the compatibility of polymeric engine parts have been investigated by means of the immersion test. Pure diesel has also test as the reference. Following SAE J1748 in conjunction with ASTM D471, selected commercial engine parts such as fuel hose and tank were immersed in the test fuels. In addition, Viton fluoroelastomers, neoprene and nitrile butadiene rubber (NBR) were also soaked for comparison. Apparent percent weight increase was used to indicate the change of the engine parts after exposed to the test fuels.
2017-03-28
Technical Paper
2017-01-0482
Cristiano Grings Herbert, Luiz Rogério De Andrade Lima, Cristiane Gonçalves
Abstract Phthalates have been extensively used in rubbers formulation as plasticizer additive for PVC and NBR promoting processing parameters or for cost reduction. The most commonly used plasticizer in PVC compounds was di-2-ethylhexyl phthalate (DEHP) currently not recommend due toxicity. DEHP is listed as prohibited to the Global Automotive Declarable Substance List (GADSL). Phthalates alternatives are already available but the compatibility in automotive fuel system with biodiesel was not extensively understood. This aspect is important since plasticizer may migrate and change rubber properties. Tri-2-ethylhexyl trimellitate (TOTM) and di-2-ethylhexyl terephthalate (DEHT) were selected in this work as alternative additives to a rubber formulation since is not listed to GADSL and have good potential as plasticizer.
2017-03-28
Technical Paper
2017-01-0932
Nehemiah S I Alozie, George Fern, David Peirce, Lionel Ganippa
Abstract The use of diesel particulate filter [DPF] has become a standard in modern diesel engine after treatment technology. However pressure drop develops across the filter as PM accumulates and this requires quick periodic burn-out without incurring thermal runaway temperatures that could compromise DPF integrity during operation. Adequate understanding of soot oxidation is needed for design and manufacture of efficient filter traps for the engine system. In this study, we have examined the impact of blending biodiesel on oxidation of PM generated from a high speed direct injection [HSDI] diesel engine, which was operated with 20% [B20] and 40% [B40] blends of two biodiesel fuels. The PM samples were collected from the engine exhaust using a Pall Tissuquartz filter, the oxidation characteristics of the samples were carried out using thermogravimetric analyzer [TGA]. The biodiesel oxidation data obtained from pure petrodiesel was compared against the fuel blends.
2017-03-28
Technical Paper
2017-01-0933
Yunhua Zhang, Diming Lou, Piqiang Tan, Zhiyuan Hu, Qian Feng
Abstract Biodiesel as a renewable energy is becoming increasingly attractive due to the growing scarcity of conventional fossil fuels. Meanwhile, the development of after-treatment technologies for the diesel engine brings new insight concerning emissions especially the particulate matter pollutants. In order to study the coupling effects of biodiesel blend and CCRT (Catalyzed Continuously Regeneration Trap) on the particulate matter emissions, the particulate matter emissions from an urban bus with and without CCRT burning BD0 and BD10 respectively was tested and analyzed using electrical low pressure impactor (ELPI). The operation conditions included steady state conditions and transient conditions. Results showed that the particulate number-size distribution of BD10 and BD0 both had two peaks in nuclei mode and accumulation mode at the conditions of idle, low speed and medium speed while at high speed condition the particulate number-size distribution only had one peak.
2017-03-28
Technical Paper
2017-01-1292
Saiful Bari, Idris Saad
Abstract Diesel engine can be run with biodiesel which has the potential to supplement the receding supply of crude oil. As biodiesel possess similar physiochemical properties to diesel, most diesel engines can run with biodiesel with minimum modifications. However, the viscosity of biodiesel is higher, and the calorific value is lower than diesel. Therefore, when biodiesel is used in diesel engines, it is usually blended with diesel at different proportions. Use of 100% biodiesel in diesel engines shows inferior performance of having lower power and torque. Improving in-cylinder airflow characteristic to break down higher viscous biodiesel and to improve air-fuel mixing are the aims of this research. Therefore, guide vanes in the intake runner were used in this research to improve the performance of diesel engine run with biodiesel.
2017-03-14
Journal Article
2016-01-9080
Yong-Yuan Ku, Jau-Huai Lu, Ko Wei Lin
Due to the rising price of crude oil, biofuel is being considered as a global alternative for fossil fuels to reduce the emission of greenhouse gases. Diesel blended with bio fuel is currently being widely adopted in many countries. The Taiwanese government has been enforcing the adoption of B2 since 2010. However, there have remained consistent concerns about engine durability related to the use of biofuel, especially regarding after-treatment systems. A selective catalytic reduction system (SCR) has been utilized recently to reduce NOX emission in order to meet the Euro IV and V emission standards. To evaluate the impact of biodiesel on the durability of engines equipped with the SCR system, a long-term testing program was organized for the purposes of this study. The results can be used as a reference for the development of marketing promotion strategies as well as government policies in Taiwan.
2017-01-10
Technical Paper
2017-26-0077
R Nagarajan, Aatmesh Jain, Kamalkishore Vora
Abstract Microalgae as feedstock are the potential third generation biofuels. Microalgae are photosynthetic microorganism which requires light, carbon-di-oxide, nitrogen, phosphorous, and potassium for growth and to produce lipids, proteins and carbohydrates in large amounts over short a periods of time. The production of biofuels from microalgal is a viable alternative due to their easy adaptability to growth conditions, possibility of growing biomass either in fresh or marine waters. Hence the current project was designed to elucidate the biodiesel producing ability of blue-green algae such as Spirulina platensis and Green algae Chlorella vulgaris. The selected algae were cultivated in suitable growth media such as modified Zarrouke medium and bold basal medium, respectively. The Spirulina platensis and Chlorella vulgaris were mass cultured for 8 days then harvested using 50 micron nylon filters and dried in sunlight to obtain dry biomass.
2016-10-25
Technical Paper
2016-36-0275
Fabiano Souza, Alberto Watanabe
Abstract Looking alternatives for renewable energy, the Biodiesel application on automotive vehicles has been increased. Although the Biodiesel is already used for some time, some markets has been increased the Biodiesel percentage, reducing the oil dependence and pollutant emission through a cleaner energy source. However, with a high rise on level of biodiesel/diesel blend, it may happens this fuel becomes harmful to some components reducing the life time, then it′s necessary some modifications on vehicle to avoid the premature degradation. The purpose of this paper is show the influence of Biodiesel percentage increase on fuel system for commercial and passenger vehicles, and the alternatives available to avoid the system degradation.
2016-10-25
Technical Paper
2016-36-0160
Alex de Oliveira, Osmano Souza Valente, José Ricardo Sodré
Abstract This study presents the effects of fuel blends containing 5%, 10%, 15% and 20% of anhydrous ethanol in diesel oil with 20% of biodiesel (B20) on performance, emissions and combustion characteristics of a diesel engine. The engine was tested with its original configuration and in the lower brake specific consumption region, at 1800 RPM. The results showed that in-cylinder peak pressure and heat release rate increased with the use of ethanol. The use of ethanol increased ignition delay and decreased exhaust gas temperature. Brake specific fuel consumption increased with ethanol addition, and fuel conversion efficiency was not affected. Increasing ethanol content in the fuel caused decreased carbon dioxide (CO2), carbon monoxide (CO) and total hydrocarbons (THC) emissions.
2016-10-25
Technical Paper
2016-36-0391
Henrique Dornelles, Jácson Antolini, Rafael Sari, Macklini Dalla Nora, Paulo Romeu Machado, Mario Martins
Abstract Renewable fuels have received more attention in the last few decades since the fuel demand is constantly increasing. In this scenario, fuels from vegetable oils are emerging as an interesting alternative. In this study, biodiesel produced from used cooking oil was studied. Several concentrations of biofuel were tested to evaluate their performance and combustion characteristics i.e. 7% (B07), 17% (B17), 27% (B27), 52% (B52), 77% (B77) and 100% by volume of Biodiesel (B100) on conventional diesel. Tests were conducted in a single cylinder four-stroke compression ignition engine. A 1-D computational model was built and compared to experimental results. The biodiesel concentration in the blends had influence on engine performance by increasing fuel consumption due to its reduced lower heating value. In addition, larger fractions of biodiesel on conventional diesel presented higher peak of heat release.
2016-10-25
Technical Paper
2016-36-0546
Charles C Conconi, Paula Manoel Crnkovic
Abstract Due to the need to replace fossil diesel in automotive engines, there is a growing demand for renewable fuels. However, to propose new fuels to be used efficiently and also, without causing damage to the environment, many studies are done. In this sense, the present study aims to evaluate two renewable fuels - farnesane and soybeam biodiesel - using the analytical technique DSC (Differential Scanning Calorimetry) for determining the oxidative thermal degradation energy of these biofuels compared to fossil diesel (reference fuel for diesel engines). The importance of studying this parameter is due to the principle that the lower the energy of oxidative thermal degradation, the best feature of burning fuel. In addition, these fuels were also tested in diesel engine OM 926 LA Euro 5 using the ESC test - European Stationary Cycle in order to monitor their performance and emissions.
2016-10-24
Journal Article
2016-01-9077
Patamaporn Chaikool, Kemwat Intravised, Prapan Patsin, Teerawat Laonapakul
Abstract Due to the need to reduce the use of fossil fuels, renewable fuels such as biodiesels are of interest. Biodiesels have different properties to pure diesel especially higher viscosity. This research studied the effect of using biodiesel on common-rail injection nozzles. Pure diesel and two biodiesel blends were supplied to the nozzles using a 1,800 bar injection pump with the same rotational speed of 2,200 rpm for 1,000 hours. The biodiesel blends were 5% palm oil based fatty acid methyl esters (FAME) biodiesel blended with 95% diesel (B5), and 10% palm oil based FAME biodiesel blended with 90% diesel (B10). Comparing with the petroleum-derived diesel (petrodiesel) fuel, the use of higher viscosity fuels such as B5 or B10 did not show the possibility to cause wearing around the injection nozzle holes.
2016-10-24
Journal Article
2016-01-9078
Herbert Feld, Nadine Oberender
Abstract Biodiesel contains a variety of compounds, depending on the production and the provenance of the fuel. During the production process and usage, some of these compounds can form deposits (nozzle tip deposits or internal diesel injector deposits: “IDID”), which may lead to severe problems, such as corrosion, filter blockage and other technical issues. To deal with these difficulties, it is essential to exactly determine the components of these deposits. Most analytical methods used before, require complex preparations and result in limited information of the deposit material. Using infrared microscopy (ATR-FTIR: Attenuated-Total-Reflection Fourier-Transform-Infrared-Spectroscopy) or mass spectrometry (TOF-SIMS: Time-of-Flight Secondary-Ion-Mass-Spectrometry), a direct analysis of the original deposit material is possible.
2016-10-17
Technical Paper
2016-01-2263
Joonsik Hwang, Choongsik Bae, Chetankumar Patel, Avinash Kumar Agarwal, Tarun Gupta
Abstract In this study, macroscopic spray characteristics of Waste cooking oil (WCO), Jatropha oil, Karanja oil based biodiesels and baseline diesel were compared under simulated engine operating condition in a constant volume spray chamber (CVSC). The high pressure and high temperature ambient conditions of a typical diesel engine were simulated in the CVSC by performing pre-ignition before the fuel injection. The spray imaging was conducted under absence of oxygen in order to prevent the fuels from igniting. The ambient pressure and temperature for non-evaporating condition were 3 MPa and 300 K. Meanwhile, the spray tests were performed under the ambient pressure and temperature of 4.17 MPa and 804 K under evaporating condition. The fuels were injected by a common-rail injection system with injection pressure of 80 MPa. High speed Mie-scattering technique was employed to visualize the evaporating sprays.
2016-10-17
Technical Paper
2016-01-2265
Ashraya Gupta, Dhruv Gupta, Naveen Kumar
Abstract The diesel engine has for many decades now assumed a leading role in both the medium and medium-large transport sector due to their high efficiency and ability to produce high torque at low RPM. Furthermore, energy diversification and petroleum independence are also required by each country. In response to this, biodiesel is being considered as a promising solution due to its high calorific value and lubricity conventional petroleum diesel. However, commercial use of biodiesel has been limited because of some drawbacks including corrosivity, instability of fuel properties, higher viscosity, etc. Biodiesel are known for lower CO, HC and PM emissions. But, on the flip side they produce higher NOx emissions. The addition of alcohol to biodiesel diesel blend can help in reducing high NOx produced by the biodiesel while improving some physical fuel properties.
2016-10-17
Technical Paper
2016-01-2261
Maira Alves Fortunato, Aurelie Mouret, Chrsitine Dalmazzone, Laurie Starck
Abstract The use of biodiesel has risen worldwide in the last decade. Different countries use different biodiesel feedstocks which will depend on the resources available locally. Some problems due to biodiesel content and feedstock quality have been pointed out in the literature, which include cold flow properties issues of several methyl esters, especially Palm Methyl Ester (PME). The present work was carried out on diesel-biodiesel blends from 0 to 30%v/vPME in order to evaluate the impact of crystals formation on fuel filter plugging using a rig test. The fuel was maintained at 5°C and 20°C during soaking. The crystal particles formation was evaluated by the Turbiscan™ technique (based on multiple light scattering with near infra-red light), followed by particles mass weight determination by filtration. The fuel was then evaluated in the test rig until performances degradation in terms of fuel flow rate and filter pressure drop.
2016-10-17
Journal Article
2016-01-2322
Michael Lance, Andrew Wereszczak, Todd J. Toops, Richard Ancimer, Hongmei An, Junhui Li, Leigh Rogoski, Petr Sindler, Aaron Williams, Adam Ragatz, Robert L. McCormick
Abstract For renewable fuels to displace petroleum, they must be compatible with emissions control devices. Pure biodiesel contains up to 5 ppm Na + K and 5 ppm Ca + Mg metals, which have the potential to degrade diesel emissions control systems. This study aims to address these concerns, identify deactivation mechanisms, and determine if a lower limit is needed. Accelerated aging of a production exhaust system was conducted on an engine test stand over 1001 h using 20% biodiesel blended into ultra-low sulfur diesel (B20) doped with 14 ppm Na. This Na level is equivalent to exposure to Na at the uppermost expected B100 value in a B20 blend for the system full-useful life. During the study, NOx emissions exceeded the engine certification limit of 0.33 g/bhp-hr before the 435,000-mile requirement.
2016-04-05
Technical Paper
2016-01-0630
Qiang Zhang, Ryan M. Ogren, Song-Charng Kong
Abstract Particle Swarm and the Genetic Algorithm were coupled to optimize multiple performance metrics for the combustion of neat biodiesel in a turbocharged, four cylinder, John Deere engine operating under constant partial load. The enhanced algorithm was used with five inputs including EGR, injection pressure, and the timing/distribution of fuel between a pilot and main injection. A merit function was defined and used to minimize five output parameters including CO, NOx, PM, HC and fuel consumption simultaneously. The combination of PSO and GA yielded convergence to a Pareto regime without the need for excessive engine runs. Results along the Pareto front illustrate the tradeoff between NOx and particulate matter seen in the literature.
2016-04-05
Technical Paper
2016-01-0994
Chetankumar Patel, Nikhil Sharma, Nachiketa Tiwari, Avinash Kumar Agarwal
Abstract Biodiesel made from Jatropha oil by transesterification process has viscosity and other important physical properties comparable to mineral diesel hence it can be used as an alternate fuel in conventional diesel engines. It is important to investigate the spray characteristics of biodiesel because emissions from the engines are dependent on fuel atomization process and resulting fuel-air mixing. This study focuses on the Jatropha biodiesel spray investigations using Phase Doppler Interferometry (PDI) for measurement of various microscopic spray parameters such as Sauter mean diameter (SMD) and spray droplet size and velocity distributions. The spray and engine experiments were carried out for Jatropha biodiesel (JB100) and their 20% blends (JB20) with mineral diesel as baseline. Fuel injection pressure during the spray experiments was maintained at 200 bars for all tests, quite similar to small horse power agricultural engines, and the fuel injection quantity was varied.
2016-04-05
Technical Paper
2016-01-0298
Sangram Jadhav
Abstract Abstract: This paper presents an experimental study on engine performance & emission based on Taguchi method and grey relational analysis for optimization of six input parameters and their five levels. Combined effect of input parameters viz. compression ratio, injection pressure, injection-nozzle geometry, additive, fuel fraction and EGR in controlling BSFC and NOxas the response variables in CI engine fueled with Mangifera Indica biodiesel blends was investigated. Number of experiments was reduced by employing Taguchi's L25orthogonal array. The signal-to-noise (S/N) ratio and grey relational analysis techniques were used for data analysis. The combination of six input parameters was obtained for optimized engine performance and emission. The optimal combination of input parameters so obtained was further confirmed through experiments. The injection nozzle geometry was the most influencing parameter.
Viewing 1 to 30 of 532

Filter