Viewing 1 to 26 of 26
Greg Barnett
Battery Fires: Why They Happen and How They Happen was written to assist those interested in this type of incident understand how automotive fires develop, spread and the damage they cause, using both deductive and inductive reasoning. The main focus of the book resides in looking at differences in failure modes between DC and AC systems, general types of battery and electrical failure modes leading to fire, how to interpret electrical fire, determination of the primary failed part, and other skills the investigating engineer will require to perform technical failure mode analysis. However, some fires have consumed the evidence to the point where a determination cannot be made with any degree of certainty. In this instance, evidence will be quite limited, and the analysis will have its limitations and should be included in the discussion as such. In some cases, a “cause undetermined” report is all the evidence will support.
John Turner
Modeling and simulation of batteries, in conjunction with theory and experiment, are important research tools that offer opportunities for advancement of technologies that are critical to electric motors. The development of data from the application of these tools can provide the basis for managerial and technical decision-making. Together, these will continue to transform batteries for electric vehicles.
Ahmad A. Pesaran
This research focuses on the technical issues that are critical to the adoption of high-energy-producing lithium Ion batteries. In addition to high energy density / high power density, this publication considers performance requirements that are necessary to assure lithium ion technology as the battery format of choice for electrified vehicles. Presentation of prime topics includes: • Long calendar life (greater than 10 years) • Sufficient cycle life • Reliable operation under hot and cold temperatures • Safe performance under extreme conditions • End-of-life recycling To achieve aggressive fuel economy standards, carmakers are developing technologies to reduce fuel consumption, including hybridization and electrification. Cost and affordability factors will be determined by these relevant technical issues which will provide for the successful implementation of lithium ion batteries for application in future generations of electrified vehicles.
In “Dynamic Wireless Charging Technology”, NextEnergy in Detroit, Michigan explains the difference between static and dynamic electric vehicle charging, and a professor from the Korea Advanced Institute of Science and Technology describes their experience with dynamically charging buses already in use in their campus. This episode highlights: • The technology allowing vehicles to be charged while in motion, through wireless power transfer • Why this type of technology will help make vehicles more efficient and easier to charge, as they will require smaller batteries • How the OLEV (Online Electric Vehicle) works following the trail of power transmitting coils
“Spotlight on Design” features video interviews and case studies, focusing on technology breakthroughs, hands-on testimonials, and the importance of fundamentals. Viewers are virtually taken to industry labs and research centers to learn how design engineers solve real-life problems. These challenges include enhancing product performance, reducing cost, improving quality and safety, while decreasing environmental impact, and achieving regulatory compliance. In the episode “Automotive Charging Infrastructure: Vehicle and Grid Integration” (21:00), engineers from NextEnergy and an infrastructure expert from General Motors explain how technologies are rapidly converging to power electric vehicles and support the overall electric grid.
Kevin Jost
Development of higher-voltage electrical systems in vehicles has been slowly progressing over the past few decades. However, tightening vehicle efficiency and emissions regulations and increasing demand for onboard electrical power means that higher voltages, in the form of supplemental 48 V subsystems, may soon be nearing production as the most cost-effective way to meet regulations. The displacement of high-wattage loads to more efficient 48 V networks is expected to be the next step in the development of a new generation of mild hybrid vehicles. In addition to improved fuel economy and reduced emissions, 48 V systems could potentially save costs on new electrical features and help better address the emerging needs of future drivers. Challenges to 48 V system implementation remain, leading to discussions by experts from leading car makers and suppliers on the need for an international 48 V standard. Initial steps toward a proposed standard have already been taken.
Jolanta Swiatowska, Alexandre Chagnes
This book presents, for the first time, the most recent developments and state-of-the-art of lithium production, lithium-ion batteries, and their recycling. It provides fundamental and theoretical knowledge on hydrometallurgy and electrochemistry in lithium-ion batteries, including terminology related to these two fields. It is of particular interest to electrochemists who usually have no knowledge in hydrometallurgy and hydro-metallurgists not familiar with electrochemistry applied to Li-ion batteries. It is also useful for both teachers and students, presenting an overview on lithium production, Li-ion battery technologies, and lithium battery recycling processes. The information is accompanied by numerous graphical presentations of different battery systems and their electrochemical performances.
Jurgen Garche, Werner Tillmetz, Bruno Scrosati
Advances in Battery Technologies for Electric Vehicles provides an in-depth look into the research being conducted on the development of more efficient batteries capable of long distance travel. The text contains an introductory section on the market for battery and hybrid electric vehicles, thoroughly presenting the latest on lithium-ion battery technology. Readers will find sections on battery pack design and management, a discussion of the infrastructure required for the creation of a battery powered transport network, and coverage of the issues involved with end-of-life management for these types of batteries.
John Warner
The book is immensely useful to beginning and experienced engineers alike who are moving into the battery field. Li-ion batteries are one of the most unique systems in automobiles today in that they combine multiple engineering disciplines, yet most engineering programs focus on only a single engineering field. This title provides you with a reference to the history, terminology and design criteria needed to understand the Li-ion battery and to successfully lay out a new battery concept. Whether you are an electrical engineer, a mechanical engineer or a chemist, The Handbook of Lithium-Ion Battery Pack Design will you better appreciate the inter-relationships between the various battery engineering fields that are required to understand the battery as an Energy Storage System.
Alejandro Franco
Rechargeable Lithium Batteries: From Fundamentals to Application provides an overview of rechargeable lithium batteries, from fundamental materials, though characterization and modeling, to applications. The market share of lithium ion batteries is fast increasing due to their high energy density and low maintenance requirements. Lithium air batteries have the potential for even higher energy densities, a requirement for the development of electric vehicles, and other types of rechargeable lithium battery are also in development. After an introductory chapter providing an overview of the main scientific and technological challenges posed by rechargeable Li batteries, Part One of this book reviews materials and characterization of rechargeable lithium batteries. Part Two covers performance and applications, discussing essential aspects such as battery management, battery safety and emerging rechargeable lithium battery technologies as well as medical and aerospace applications.
Gianfranco Pistoia
Lithium-Ion Batteries features an in-depth description of different lithium-ion applications, including important features such as safety and reliability. This title acquaints readers with the numerous and often consumer-oriented applications of this widespread battery type. It also explores the concepts of nanostructured materials, as well as the importance of battery management systems. This handbook is an invaluable resource for electrochemical engineers and battery and fuel cell experts everywhere, from research institutions and universities to a worldwide array of professional industries. It contains all applications of consumer and industrial lithium-ion batteries, including reviews and contributions from the world's leading industry and research experts, and presents executive summaries of specific case studies.
Frano Barbir
Demand for fuel cell technology is growing rapidly. Fuel cells are being commercialized to provide power to buildings like hospitals and schools, to replace batteries in portable electronic devices, and as replacements for internal combustion engines in vehicles. PEM (Proton Exchange Membrane) fuel cells are lighter, smaller, and more efficient than other types of fuel cell. As a result, over 80% of fuel cells being produced today are PEM cells. This new edition of Dr. Barbir’s groundbreaking book still lays the groundwork for engineers, technicians and students better than any other resource, covering fundamentals of design, electrochemistry, heat and mass transport, as well as providing the context of system design and applications. Yet it now also provides invaluable information on the latest advances in modeling, diagnostics, materials, and components, along with an updated chapter on the evolving applications areas wherein PEM cells are being deployed.
Edouard Freund, Paul Lucchese
Hydrogen, energy vector for the future? Or, on the contrary, limited to its current applications in the field of chemistry and refining for decades to come, possibly even until the end of the century? There is much controversy over this issue and two sides to the argument. Advocates of the hydrogen civilization consider that, following a technological revolution hydrogen will play a universal role alongside electricity as a substitute for fossil fuels, especially (but not only) in transport, leading to radical elimination of CO2 emissions. For the skeptics, and even outspoken opponents, hydrogen will remain restricted to its current applications due to the insoluble problems inherent to its generalized use, especially in transport. This book highlights the increasing and inevitable role of "energy" hydrogen – as opposed to chemical hydrogen – in the key sectors of transport and "clean" electricity production.
Roger Schreffler
Based on extensive research conducted throughout 2011 by ABOUT Automotive, including many senior-level interviews at the major sector companies, this first edition study provides fresh, unbiased insight in a number of areas, including: • The market for EV/hybrid batteries and battery material suppliers, determining the trends and topical issues, as well as providing valuable market sector data; • The main manufacturers in both the battery and battery material supplier sectors; • Vehicle manufacturer strategy analysis of the major players involved with EV/hybrid batteries; and • A statistical appendix including model-level sales data for EV/hybrid vehicles. The report also includes an authoritative analysis of the following leading vehicle manufacturer strategies: • Toyota • Honda • Mitsubishi • Nissan • Suzuki, Mazda and other Japanese manufacturers • Japanese bus and truck manufacturers • North American OEMs • European OEMs • Asia OEMs
Matthew M. Mench, T. Nejat Veziroglu, Emin Caglan Kumbur
For full market implementation of PEM fuel cells to become a reality, two main limiting technical issues must be overcome- cost and durability. This cutting-edge volume directly addresses the state-of-the-art advances in durability within every fuel cell stack component. Designed to be relevant to the professional community, in addition to researchers, this book will serve as a valuable reference, featuring topics covered nowhere else, and a one-stop-shop to create a solid platform for understanding this important area of development. The reference covers aspects of durability in the entire fuel cell stack. Each chapter also includes vision of pathways forward and an explanation of the tools needed to continue along the path toward commercialization.
D. Pavlov
The book presents a comprehensive overview of the theory of the technological processes of lead-acid battery manufacture and their influence on battery performance parameters. It summarizes the current knowledge about the technology of lead-acid battery production and presents it in the form of an integral theory. This theory is supported by ample illustrative material and experimental data, thus allowing technologists and engineers to control the technological processes in battery plants and providing university lecturers with a toll for clear and in-depth presentation of the technology of lead-acid battery production in their courses. The relationship between the technological processes and the performance characteristics of the batteries is disclosed too.
Giving unique insight into Toyota's 2011 technical developments, this book includes 18 papers that chronicle the Japanese OEM's R&D activities in a variety of technologies during that year. This volume has a special focus on next-generation electric storage, and 10 of the papers highlight developments in such things as batteries, fuel cells and next-generation energy. Title highlights include: Next Generation Electric Storage and Its Applications • Secondary Battery Development for Hybrid Vehicles at Toyota • Development Trends and Popularization Trends for Fuel Cell Vehicles • Renewable Energy and Its Effective Usage Other Technical Areas • Drivetrain Development for the Lexus LFA • Development of Scratch-Resistant Universal Clear Coat • Development of Environmentally Friendly Machining Process for Aluminum Parts
David A. Berry, James J. Spivey, Dushyant Shekhawat
This book covers all aspects of fuel processing: fundamental chemistry, different modes of reforming, catalysts, catalyst deactivation, fuel desulfurization, reaction engineering, novel reforming concepts, thermodynamics, heat and mass transfer issues, system design, recent research and development, etc., which makes it one single source of information for scientists and engineers. It serves as an excellent self-instruction book for those new to fuel cells, and as a comprehensive resource for experts in the area of fuel processing. It can be used as a reference book for advanced level university courses in this area.
Ronald K. Jurgen
With production and planning for new electric vehicles gaining momentum worldwide, this book – the second in a series of five volumes on this subject – provides engineers and researchers with perspectives on the most current and innovative developments regarding electric and hybrid-electric vehicle technology, design considerations, and components. This book features 15 SAE technical papers, published from 2008 through 2010, that provide an overview of research on electric vehicle batteries. Topics include: Charging strategy studies for PHEV batteries Electric vehicle and hybrid-electric vehicle rechargeable energy storage systems Strategies for reducing plug-in battery costs Cold temperature performance Lithium-ion battery power capability testing, crash safety, and modeling
Davide Andrea
This timely book provides you with a solid understanding of battery management systems (BMS) in large Li-Ion battery packs, describing the important technical challenges in this field and exploring the most effective solutions. You find in-depth discussions on BMS topologies, functions, and complexities, helping you determine which permutation is right for your application. Packed with numerous graphics, tables, and images, the book explains the “whys” and “hows” of Li-Ion BMS design, installation, configuration and troubleshooting. This hands-on resource includes an unbiased description and comparison of all the off-the-shelf Li-Ion BMSs available today. Moreover, it explains how using the correct one for a given application can help to get a Li-Ion pack up and running in little time at low cost.
Patrick T. Moseley, Chris K. Dyer, Zempachi Ogumi
The Encyclopedia of Electrochemical Power Sources is a truly interdisciplinary reference for those working with batteries, fuel cells, electrolyzers, supercapacitors, and photo-electrochemical cells. With a focus on the environmental and economic impact of electrochemical power sources, this five-volume work consolidates coverage of the field and serves as an entry point to the literature for professionals and students alike.
Gianfranco Pistoia
For researchers interested in devices and systems drawing power from batteries, this book will be a valuable information source. It reports on many applications in detail and presents the essentials of batteries. Links to further reading are provided through the 275 references. What to expect from this book: • Applications in the portable and industrial areas • Primary and secondary batteries • Portable applications with details on their electronic aspect • Devices' power consumption and management for the implications on battery life • Battery management • Industrial applications • Wireless connectivity • Vehicular applications • Full electric and hybrid vehicles
Michael Gasik
A fuel cell is an electrochemical device that converts the chemical energy of a reaction (between fuel and oxidant) directly into electricity. Given their efficiency and low emissions, fuel cells provide an important alternative to power produced from fossil fuels. A major challenge in their use is the need for better materials to make fuel cells cost-effective and more durable. This important book reviews developments in materials to fulfil the potential of fuel cells as a major power source. After introductory chapters on the key issues in fuel cell materials research, the book reviews the major types of fuel cell. These include alkaline fuel cells, polymer electrolyte fuel cells, direct methanol fuel cells, phosphoric acid fuel cells, molten carbonate fuel cells, solid oxide fuel cells and regenerative fuel cells. The book concludes with reviews of novel fuel cell materials, ways of analyzing performance and issues affecting recyclability and life cycle assessment.
Trung Van Nguyen, Tim Zhao, K.D. Kreuer
This book intends to fills the information gap between regularly scheduled journals and university level textbooks by providing in-depth coverage over a broad scope. The present volume provides informative chapters on thermodynamic performance of fuel cells, macroscopic modeling of polymer-electrolyte membranes, the prospects for phosphonated polymers as proton-exchange fuel cell membranes, polymer electrolyte membranes for direct methanol fuel cells, materials for state of the art PEM fuel cells, and their suitability for operation above 100°C, analytical modelling of direct methanol fuel cells, and methanol reforming processes.
David Thompsett, Nigel Brandon
Fuel cells continue to be heralded as the energy source of the future, and every year an immense amount of research time and money is devoted making them more economically and technically viable. This compendium brings together an up-to-date review of the literature and commentary surrounding fuel cells research. Covering all relevant disciplines from science to engineering to policy, it is an exceptional resource for anyone with an invested interest in the field.
T. R. Crompton
The Battery Reference Book guides the reader through the subject in a logical sequence, covering electrochemical theory as it applies to batteries; battery selection; and the theory and practice of battery charging. The book also includes comprehensive information from battery manufacturers about the performance characteristics of the batteries they supply. Among the battery types covered are: Lead-acid; Nickle; Silver; Alkaline manganese; Carbon-zinc and carbon-zinc chloride; Mercury; Lithium; Manganese dioxide-magnesium perchlorate; Metal-air; High-temperature thermally activated; Zinc-chlorine; Zinc-air; Water-activated; Sodium-sulphur; and Electric vehicle.
Viewing 1 to 26 of 26