Display:

Results

Viewing 1 to 30 of 1894
2014-12-01
Magazine
Materials Infusing Lightweight Composite Structures Business Jets Business Jets Bounce Back
2014-11-25
WIP Standard
AIR6853
This Aerospace Information Report (AIR) provides information on the thrust vectoring flight control systems incorporated on various aircraft development programs and production military aircraft. This report includes V/STOL aircraft thrust vector applications in addition to recommendations for use of thrust vectoring for the improvement of low speed maneuverability in conventional aircraft. Descriptions of each aircraft are provided along with a summary of the thrust vector control system, and, mechanical design methodologies used. Block diagrams, system schematics, and, several system level components are presented.
2014-11-07
WIP Standard
AS5659/4
This specification provides guidance for the physical layer of optical networks which use Wavelength Division Multiplexing (WDM), within the SAE AS5659 WDM LAN specifications document family. The physical layer consists of cabling and connectors which provide the optical interconnections between the components and portions of the network. Performance requirements for general link connections- called the physical layer- are described. Specific sets of documents are identified, corresponding to each of several environments, which describe physical layer design, installation, maintenance, and training.
2014-11-07
WIP Standard
AS5659/2
This document describes the Client Adaptation Element (CAE), the set of functions that provides access and aggregation capability for the WDM LAN, within the SAE AS5659 WDM LAN specifications document family. In the WDM LAN, the CAE fits in between the Optical Backbone, which provides transmission of data over the transparent network, and the clients which the network serves. The complexity of the CAE depends on the types and number of clients.
2014-11-07
WIP Standard
AS5659/3
This document describes network management and control facilities for the WDM LAN, within the SAE AS5659 WDM LAN specifications document family. Unlike like point-to-point solutions, networks require a control plane to allocate the shared network resources and a management plane which provides a disciplined approach to configuring and monitoring the network. Within a Wavelength Division Multiplexed (WDM) environment, management and control provides wavelength selection and routing for traffic that is processed. The extent of network management and control depends on the design of the network, and can range from hardwired wavelengths to dynamic wavelength allocation with damage recovery.
2014-11-07
WIP Standard
AS5659/1
This document provides a specification for the WDM Optical Backbone Network (OBN) within the SAE AS5659 WDM LAN specifications document family. The specification applies to any optical network which uses Wavelength Division Multiplexing (WDM) in any optical media, and describes a transparent optical network that contains optical components (i.e. without Optical-to-Electrical conversion). The specification describes optical network elements (ONE) that perform optical transport, optical add/drop, optical amplification, optical routing, and optical switching functions. Performance limits are given for conforming optical signal interfaces and transfer functions for the ONEs, as well as architectures comprising combinations of them. This specification will enable network and systems engineers to design and use scalable and upgradable WDM based optical networks aboard mobile platforms.
2014-11-05
WIP Standard
AIR5601A
This SAE Aerospace Information Report (AIR) is devoted to the challenges of applying optics to new advanced RF analog systems only; digital data link applications are covered elsewhere in protocol/architecture specific documents like Fibre Channel, ATM, Ethernet, Sonet, etc.
2014-11-05
WIP Standard
ARP6887
The ARP shall cover the objectives and activities of Verification & Vallidation Processes required to assure high quality and/or criticality level of an IVHM Systems and Software.
2014-10-22
WIP Standard
AS7997A
This specification covers constant displacement hydraulic motors, generally remotely mounted, using hydraulic fluid under pressure as the energy transfer medium for driving various accessories. Hydraulic motors shall be suitable for use in aircraft hydraulic systems conforming to and as defined in MIL-H-5440 and MIL-H-8891 as applicable.
2014-10-09
Standard
ARP4103A
This document recommends design and performance criteria for aircraft lighting systems used to illuminate flight deck controls, luminous visual displays used for transfer of information, and flight deck background and instrument surfaces that form the flight deck visual environment. This document is for commercial transport aircraft except for applications requiring night vision compatibility.
2014-10-08
Standard
AIR6226
Most of the Trimmable Horizontal Stabilizer Actuators (THSA) feature a dual structural load path, the primary load path being loaded, the secondary load path being normally unloaded, or both load paths sharing in parallel the Horizontal Stabilizer load. This document describes existing methods for detecting rupture or disconnection of loaded load paths as an overview for those specifying or designing Horizontal Stabilizer Trim Actuators in order to compare existing solutions as reference for implementation in new aircraft programs.
2014-10-03
WIP Standard
AS8472
This document defines methods to exchange data about the health of a fiber optic network.
2014-10-02
WIP Standard
AS6506
This document defines performance standards which fiber optic cable splices must meet in order to be accepted for use in aerospace platforms and environments.
2014-10-01
Magazine
Propulsion: Energy Sources Flying on vegetation Avionics/Electronics Avionics heat up, in a good way Unmanned Vehicles Reaching the benchmark in secure unmanned vehicle software Thermal Management Submersion and directed flow cooling technology for military applications RF & Microwave Technology Airborne antenna considerations for C-Band telemetry systems Software-designed system improves wireless test speed and coverage
2014-09-30
WIP Standard
AIR6334
This SAE Aerospace Information Report (AIR) examines the need for and the application of a power train usage metric that can be used to more accurately determine the TBO for helicopter transmissions. It provides a formula for the translation of the recorded torque history into mechanical usage. It provides examples of this process and recommends a way forward. This document of the SAE HM-1 IVHM Committee is not intended as a legal document and does not provide detailed implementation steps, but does address general implementation concerns and potential benefits.
2014-09-20
Book
This is the electronic format of the Journal.
2014-09-16
Technical Paper
2014-01-2132
Prashant Vadgaonkar, Ullas Janardhan, Adishesha Sivaramasastry
Abstract Performance of Avionics systems is dictated by the timely availability and usage of critical health parameters. Various sensors are extensively used to acquire and communicate the desired parameters. In today's scenario, sensors are hardwired. The number of sensors is growing due to automation which increases the accuracy of intended Aircraft functions. Sensors are distributed all over the Aircraft and they are connected through wired network for signal processing and communication. LRUs (Line Replaceable Unit) which are integrating various sensors also use a wired approach for communication. The use of a wired network approach poses challenges in terms of cable routing, stray capacitances, noise, mechanical structure and added weight to the structure. The weight of cables contributes significantly to the overall weight of the aircraft. As the weight of Aircraft increases, the required fuel quantity also increases. The Key driver for Airline operational cost is fuel.
2014-09-16
Technical Paper
2014-01-2190
Michael Ellis, William Anderson, Jared Montgomery
Under a program funded by the Air Force Research Laboratory (AFRL), Advanced Cooling Technologies, Inc. (ACT) has developed a series of passive thermal management techniques for cooling avionics. Many avionics packages are often exposed to environment temperatures much higher than the maximum allowable temperatures of the electronics. This condition prevents the rejection of waste heat generated by these electronics to the surrounding environment and results in significant ambient heat gain. As a result, heat must be transported to a remote sink. However, sink selection aboard modern aircraft is limited at best. Often, the only viable sink is aircraft fuel and, depending on mission profile, the fuel temperature can become too high to effectively cool avionics. As a result, the electronic components must operate at higher than intended temperatures during portions of the mission profile, which reduces component lifetime and significantly increases the probability of failure.
2014-09-16
Technical Paper
2014-01-2189
Andrew Slippey, Michael Ellis, Bruce Conway, Hyo Chang Yun
Abstract Carbon fiber reinforced polymer (CFRP) composite material is an attractive structural material in applications where mass is critical. The carbon fiber matrix provides strength comparable to steel with only 25% of the density. The CFRP sheet can often also be made thinner than metal with similar mechanical properties, further increasing the mass savings. However, thermal challenges have arisen with the increased use of composites. In the area of electronics enclosures, traditional metal structures conduct and spread heat over large surfaces, but composites act as insulation. Heat generated by components causes internal temperatures to rise and has detrimental impact on the performance and reliability of the electronics. A method is proposed and tested that utilizes constant conductance heat pipes (CCHPs) that penetrate through the CFRP walls. The CCHPs are capable of transporting significant heat energy through a limited cross-section with a minimal temperature penalty.
2014-09-16
Technical Paper
2014-01-2188
Riko Bornholdt, Frank Thielecke
Abstract Due to a shift of the major aviation concerns to focus on enhancements of the successful programs instead of pushing their successors, the need for new methodologies for aircraft system architecture design emerges. Challenging the existing requirements and reconsidering the functions and their allocation could help to dissolve the system specific development paradigm and lead to beneficial architecture concepts. To help understand the mechanisms and boundary conditions of developing fault-tolerant systems, the first part of the paper gives an overview of the successive process of architecture design. The significant architectural design decisions and the concurrent safety assessment process are discussed. One crucial step in the design space exploration of future aircraft system architectures is the allocation of the consumers to the available power sources. Within the paper a methodology for the optimization of the power allocation for flight control systems is proposed.
2014-09-16
Technical Paper
2014-01-2182
Evan Racine, Zachary Lammers, Street Barnett, John Murphy, Quinn Leland
Abstract The purpose of this study is to set up a laboratory test apparatus to analyze aircraft flight control EMAS' electrical and thermal energy flow under transient and dynamic flight profiles. A hydraulic load frame was used to exert load to the EMA. The actuator was placed within an environmental chamber which simulates ambient temperature as function of altitude. The simulated movement or stroke was carried out by the EMA. The under test EMA's dynamic load, stroke, and ambient temperature were synchronized through a real time Labview DAQ system. Motor drive voltage, current, regenerative current, and motor drive and motor winding temperature were recorded for energy analysis. The EMA under test was subjected to both transient and holding load laid out in a test matrix.
2014-09-16
Technical Paper
2014-01-2196
Massimo Conte, Michele Trancossi
Abstract This paper introduces a new equipment, which allows autonomous landing and docking of a VTOL aircraft and any mobile system. It has been studied and developed inside the MAAT (Multibody Advanced Airship for Transport) EU FP7 project to control autonomous docking of manned cruiser and feeder airships in movement. After a detailed analysis it has been verified that It could be considered a technological spin off the MAAT project. It defines a new instrumental system for governing relative positioning between a movable target and VTOL air vehicles, such as helicopters, airships and multi-copters. This solution is expected to become a short time to market equipment for helicopters (both manned and unmanned) ensuring autonomous landing ability even in case of low visibility. Infrared emitters allow controlling both position and yaws angle. It is in advanced testing phase after a preliminary successful testing using a quadcopter.
2014-09-16
Journal Article
2014-01-2204
Gregory J. Moore, Frank Puglia, Lawrence Myron, Stephen Lasher, Bob Doane, Joe Gnanaraj, Seth Cohen, Arthur Dobley, Ryan Lawrence, Rong Yan
Abstract For 70 years Yardney has been a leader in specialty battery and energy systems for military, space, avionics, weapon systems and undersea vehicles. In addition to battery systems, Yardney also delivers hybrid systems for ground, space, undersea and avionic applications. The beauty of hybrid systems, combining energy sources such as batteries, capacitors, fuel cells and solar, is that they can be used to optimize energy and power density, and with proper design, the systems can also lead to longevity of components and an overall cost savings. For ground applications, utilization of hybrid systems can assist in conservation of fuel by making vehicle applications more efficient. For space applications, satisfying pulses can be improved by a capacitor and battery hybrid energy storage system. To optimize aircraft performance and decrease operating costs, avionics are beginning to move towards more electric aircrafts (MEA).
2014-09-16
Technical Paper
2014-01-2206
Prashant Vadgaonkar
Abstract Today's digital avionics systems leverage the use of the Embedded COTS (Commercial Off The Shelf) hardware to fit the need of small form factor, low power, reduced time to market and reduced development time with efficient use of DO-254 for compliance of product. COTS modules are entering in digital avionics systems such as COM (Computer On Module)/SOM (System On Module)/SIP (System In Package) with huge advancement in semiconductor and packaging industry. In today's scenario COTS are very useful for DAL (Development Assurance Level) C and below as the efforts on compliance for DAL A and B are huge. This paper proposes to use these for DAL A and B as well, where one can get enormous benefit on efforts of compliance and time to market. This paper makes an attempt to explain the current scenario of the Embedded COTS usage in Avionics Systems.
2014-09-16
Technical Paper
2014-01-2202
Gene Tu, Wei Shih, Walter Yuen
Abstract To meet pulse power mode component cooling application needs, we developed, fabricated and tested a concept to use energy storage material and phase change material to enhance the heat dissipation of a conventional heat sink. Test results demonstrated the ESM/PCM heat sink has unique thermal performance. Under the same working condition, the peak temperature of ESM/PCM heat sink is 1.5°C lower than of a conventional heat sink. An optimized design can lead to a significant weight reduction for the heat sink in applications with high peak load and low duty power cycle power.
2014-09-16
Technical Paper
2014-01-2146
Rudolf Neydorf, Sergey Novikov, Nikita Kudinov
Abstract Airship designers research application versions of systems with several ballonets for adjustment of airship roll and/or pitch as a whole. This requires effective automatic status management of each separate ballonet. But multi-ballonet system control issue encounters the absence of industrially measurable variables of each separate ballonet status. Thus status control issue of the system becomes uncertain. The fact requires the issue studying and shaping new scientific and technical solutions. This publication represents research results implying that fairly simple implementation and effective result can be achieved by application of fuzzy control concept. Its application is built on generating the representative quantity of fuzzy production rules. They are based on present set evaluation of known parameters and measured variables. This results in fuzzy but meaningful image of ballonet system status and airship as a whole.
2014-09-16
Technical Paper
2014-01-2150
Martin Bradish, Obed Sands, Ted Wright, Casey Bakula, Daniel Oldham, William Ivancic, Michael Lewis, Joseph Klebau, Nicholas Tollis, Andrew Jalics
Abstract This paper summarizes the Power, Avionics and Software (PAS) 1.0 subsystem integration testing and test results that occurred in August and September of 2013. This paper covers the capabilities of each PAS assembly to meet integration test objectives for non-safety critical, non-flight, non-human-rated hardware and software development. This test report is the outcome of the first integration of the PAS subsystem and is meant to provide data for subsequent designs, development and testing of the future PAS subsystems. The two main objectives were to assess the ability of the PAS assemblies' to exchange messages and to perform audio tests of both inbound and outbound channels. This paper describes each test performed, defines the test, the data, and provides conclusions and recommendations.
2014-09-16
Technical Paper
2014-01-2159
Richard Mourn
Abstract The paper provides an introduction into IEEE-1394, AS5643 and related documents. It then explores the I/O Technology Suitability Study criteria used to originally select IEEE-1394b (Beta) as the Vehicle System Data Bus for the F-35 Joint Strike Fighter and update each criterion with new information based on more than a decade of experience and use in not only the F-35 but several other programs. Based on the suitability study criteria, the reader gains insight into how and why programs like the F-35, which implements dozens of AS5643/IEEE-1394 devices per plane, utilize AS5643/IEEE-1394 for its vehicle system network. This unprecedented use of a high speed (491.52Mb/s) serial interface on an aircraft proves the capability of AS5643/1394, and opens the door for higher bandwidth communication between the Control Computer and remote nodes.
2014-09-16
Journal Article
2014-01-2163
Mario Luca Fravolini, Matthew Rhudy, Srikanth Gururajan, Silvia Cascianelli, Marcello Napolitano
Abstract A measurement device that is extremely important for Unmanned Aerial Vehicle (UAV) guidance and control purposes is the airspeed sensor. As the parameters of feedback control laws are conventionally scheduled as a function of airspeed, an incorrect reading (e.g. due to a sensor fault) of the Pitot-static tube could induce an incorrect feedback control action, potentially leading to the loss of control of the UAV. The objective of this study is to establish the accuracy and reliability of the two airspeed estimation techniques for eventual use as the basis for real-time fault detection of anomalies occurring on the Pitot-static tube sensor. The first approach is based on an Extended Kalman Filter (EKF) and the second approach is based on Least Squares (LS) modeling. The EKF technique utilizes nonlinear kinematic relations between GPS, Inertial Measurement Unit and Air Data System signals and has the advantage of independence from knowledge of the aircraft model.
Viewing 1 to 30 of 1894

Filter