Criteria

Display:

Results

Viewing 1 to 30 of 1891
Technical Paper
2014-09-16
Hitoshi Oyori, Shingo Nakagawa, Hidefumi Saito, Norio Takahashi, Manabu Seta, Noriko Morioka
With the growth of onboard electrification and the constant improvement of ECO standards, aircraft electricity load has maintained a rapid, high growth. The More Electric Architecture for Aircraft and Propulsion (MEAAP) is emerging as a viable solution for improved performance and eco-friendly aircraft operations. This study proposes a conceptual system design of All Electric Aircraft, or AEA, incorporated with electrical management for onboard systems. The authors have discussed the future of aviation with an airliner. The airliner imagines the likelihood of some effective improvements in aviation by More Electric Aircraft concept. The operators, the pilots and the maintenance crews expect improvement of operability, maintainability and fuel saving, while requiring high reliability and safety. System designers struggle to optimize lighter weight, shorter propulsion operating and lower cost as well as these requests. This study proposes three points for optimization of onboard systems, which are environment control system, flight control system, engine control system, landing gear system and electric power system.
Technical Paper
2014-09-16
Kazuki Shibata, Tomo Maedomari, Kenichi Rinoie, Noriko Morioka, Hitoshi Oyori
In aircraft conceptual design, we consider several different configurations and systems so that performance requirement can be satisfied. When choosing many sets of parameters, designers try to make all the objective functions as good as possible, and then determine the best aircraft configuration. In this case, however, the feasibility of this best aircraft configuration is somewhat doubtful because we haven’t considered aircraft secondary power systems which are indispensable for aircraft operation. Therefore we need to include the consideration of aircraft secondary power systems into the conceptual design. Past studies of conceptual designs with aircraft secondary power systems are few compared with those into which detailed analyses of aerodynamics, structural dynamics, flight stability and propulsion have been integrated. One reason might be that detailed data of existing aircraft is difficult to obtain. Second, basic methods which integrate secondary power systems analyses into conceptual design process haven’t been discussed in detail in the literature.
Technical Paper
2014-09-16
Didier Regis, Julie Berthon, Marc Gatti
In the last three decades, the integrated circuit industry has followed a steady path of constantly shrinking devices geometries and increased functionality that larger chips provide. These performances and functionality improvements have resulted in a history of new technology generations every two to three years, commonly referred to as .Moore Law. Each new generation has approximately doubled logic circuit density and increased performance by about 40%. Unfortunately these improvements may be reached today at the cost of a loss of reliability and operational lifetime. The increasing integration of embedded systems and the need to support new features requires high-performance and power-efficient processors. This trend pushes toward the use and development of components implemented in advanced CMOS technologies (22nm technology and bellow, the critical feature size of the elementary devices will drop to 5 nm in 2018, for 14 nm technology node). But, critical embedded computing systems have also to fulfill specific safety requirements.
Technical Paper
2014-09-16
Massimo Conte, Michele Trancossi
Abstract This paper introduces a new equipment, which allows autonomous landing and docking of a VTOL aircraft and any mobile system. It has been studied and developed inside the MAAT (Multibody Advanced Airship for Transport) EU FP7 project to control autonomous docking of manned cruiser and feeder airships in movement. After a detailed analysis it has been verified that It could be considered a technological spin off the MAAT project. It defines a new instrumental system for governing relative positioning between a movable target and VTOL air vehicles, such as helicopters, airships and multi-copters. This solution is expected to become a short time to market equipment for helicopters (both manned and unmanned) ensuring autonomous landing ability even in case of low visibility. Infrared emitters allow controlling both position and yaws angle. It is in advanced testing phase after a preliminary successful testing using a quadcopter. Tests has produced autonomous landing on a small platform mounted on an unmanned vehicle.
Technical Paper
2014-09-16
Gregory J. Moore, Frank Puglia, Lawrence Myron, Stephen Lasher, Bob Doane, Joe Gnanaraj, Seth Cohen, Arthur Dobley, Ryan Lawrence, Rong Yan
Abstract For 70 years Yardney has been a leader in specialty battery and energy systems for military, space, avionics, weapon systems and undersea vehicles. In addition to battery systems, Yardney also delivers hybrid systems for ground, space, undersea and avionic applications. The beauty of hybrid systems, combining energy sources such as batteries, capacitors, fuel cells and solar, is that they can be used to optimize energy and power density, and with proper design, the systems can also lead to longevity of components and an overall cost savings. For ground applications, utilization of hybrid systems can assist in conservation of fuel by making vehicle applications more efficient. For space applications, satisfying pulses can be improved by a capacitor and battery hybrid energy storage system. To optimize aircraft performance and decrease operating costs, avionics are beginning to move towards more electric aircrafts (MEA). This embraces the concept of utilizing electrical power for driving aircraft subsystems currently powered by mechanical means.
Technical Paper
2014-09-16
Gene Tu, Wei Shih, Walter Yuen
Abstract To meet pulse power mode component cooling application needs, we developed, fabricated and tested a concept to use energy storage material and phase change material to enhance the heat dissipation of a conventional heat sink. Test results demonstrated the ESM/PCM heat sink has unique thermal performance. Under the same working condition, the peak temperature of ESM/PCM heat sink is 1.5°C lower than of a conventional heat sink. An optimized design can lead to a significant weight reduction for the heat sink in applications with high peak load and low duty power cycle power.
Technical Paper
2014-09-16
Prashant Vadgaonkar
Abstract Today's digital avionics systems leverage the use of the Embedded COTS (Commercial Off The Shelf) hardware to fit the need of small form factor, low power, reduced time to market and reduced development time with efficient use of DO-254 for compliance of product. COTS modules are entering in digital avionics systems such as COM (Computer On Module)/SOM (System On Module)/SIP (System In Package) with huge advancement in semiconductor and packaging industry. In today's scenario COTS are very useful for DAL (Development Assurance Level) C and below as the efforts on compliance for DAL A and B are huge. This paper proposes to use these for DAL A and B as well, where one can get enormous benefit on efforts of compliance and time to market. This paper makes an attempt to explain the current scenario of the Embedded COTS usage in Avionics Systems. This paper also brings the study of the selection process of Embedded COTS along with the important selection parameters, constraints, challenges and guidelines.
Technical Paper
2014-09-16
Thierry Cornilleau, Pierre Linard, Paul Moxon, Christopher Nicholas
UK and French Aerospace industries are currently collaborating, under the Anglo-French Government Memorandum of Understanding, on a programme, named ECOA (European Component Oriented Architecture) which aims to reduce the development and through-life-costs of the increasingly complex software systems within military air platforms. The ECOA programme defines an open real-time software architecture, agreed between the programme partners, that meets these goals. The software architecture is based around a number of key concepts: the use of flexible architectural paradigms which provide event and data distribution, the precise specification of software artefacts, allowing a detailed understanding of functional and non-functional behaviour, a better model of distributed real-time behaviour, the support for Model-Driven Engineering (MDE) and automated code generation to reduce development costs, the ability to support any underlying hardware and software platform ensuring the approach is able to support legacy and new build platforms, and the creation of a market for software artefacts, based on an agreed breakdown of mission systems functionality.
Technical Paper
2014-09-16
Yvan Wilfried Tondji Chendjou, Ruxandra Botez
Measurements of the inertial properties are needed during the design of aircrafts. Furthermore, the knowledge of these measurements is one of the most problems to be solved while studying aircraft rotational motion or even designing aircraft flight control systems. This is the reason why accurate methods for computing aircraft inertial properties have received sustained interest over the years. This paper firstly presents a structural analysis of a drone - the UAS-S4 ETHECATL. Mass, center of gravity position and mass moment of inertia are numerically determined through Raymer and DATCOM statistical-empirical methods, coupled with mechanical calculations. Then, experimental tests are performed using the pendulum method, in order to validate the numerical predictions. When experimentally determining the mass moment of inertia, the bifilar torsion pendulum is used for the moment vertical axis and the simple pendulum for the moment longitudinal and transversal axes determination. A nonlinear dynamic model is developed for rotational motions about the center of gravity of the system under tests.
Technical Paper
2014-09-16
Rudolf Neydorf, Sergey Novikov, Nikita Kudinov
Abstract Airship designers research application versions of systems with several ballonets for adjustment of airship roll and/or pitch as a whole. This requires effective automatic status management of each separate ballonet. But multi-ballonet system control issue encounters the absence of industrially measurable variables of each separate ballonet status. Thus status control issue of the system becomes uncertain. The fact requires the issue studying and shaping new scientific and technical solutions. This publication represents research results implying that fairly simple implementation and effective result can be achieved by application of fuzzy control concept. Its application is built on generating the representative quantity of fuzzy production rules. They are based on present set evaluation of known parameters and measured variables. This results in fuzzy but meaningful image of ballonet system status and airship as a whole. Thus achieving fairly good control over multi-ballonet system.
Technical Paper
2014-09-16
Jay Wilhelm, Joseph Close, Wade Huebsch
A Hybrid Projectile (HP) is an aerial vehicle that is ballistically launched, and then transforms into an Unmanned Aerial Vehicle (UAV). It was desirable for a surveillance equipped HP to change its trajectory, and ultimately the point of impact, by departing from its ballistic trajectory after being launched. The exact control surface sizes, location, and actuation along with the control strategies were needed. A method was investigated to utilize deflectable control surfaces in conjunction with a guidance system to maneuver to HP to a desired point of impact while ensuring that the projectile remains statically and dynamically stable. Dual feedback control methods were devised to control heading and pitch using deflectable vertical and horizontal tail surfaces. These control methods were tested and tuned using the Six Degree of Freedom (6DoF) system in Simulink. A cruciform tail section, analyzed in previous work for a 40 mm HP, was utilized so that the HP was statically and dynamically stable.
Technical Paper
2014-09-16
Evan Racine, Zachary Lammers, Street Barnett, John Murphy, Quinn Leland
Electromechanical Actuation System (EMAS) faces some major technological challenges before it could be fully adopted for primary flight control of aircraft, replacing conventional hydraulic actuation system. One of the challenges is the thermal management of EMAS. The working fluid in conventional hydraulic actuation system acts as a coolant while EMAS does not have a readily available heat sink. Another technical challenge facing EMAS for primary flight control is its highly dynamic demand on aircraft electric power system. Its high peak power demand and regenerative power pose a challenge to aircraft electric power generation and distribution system. The purpose of this study is to analyze EMAS’ transient and dynamic electrical and thermal energy flow under a simulated flight envelope and thermal environment. A laboratory test apparatus was set up to evaluate and characterize the energy flow of an EMA subjected to a simulated dynamic flight control surface load and thermal environment.
Technical Paper
2014-09-16
Christopher Ian Hill, Chris Gerada, Paolo Giangrande, Serhiy Bozhko
This paper presents the initial development of a Modelica Library for Electro-Mechanical Actuator system analysis. At present two main system components are described, these are the Power Electronic Converter and Electric Machine, although further components will be added. These models provide the user with the ability to simulate Electric Machine and Power Electronic Converter systems including physical effects, losses and fault conditions. Established modelling programs such as Saber and MATLAB SimPowerSytems are often unable to provide all the aspects required to accurately simulate real systems in an easy to use, flexible manner. Therefore this paper shows how Modelica has been used to create versatile models able to simulate many practical aspects such as Power Electronic Converter losses and Power Electronic Converter faults, Electric Machine losses and Electric Machine faults. Examples are included in order to demonstrate the use of these models within a variety of systems including an Electro-Mechanical Actuator.
Technical Paper
2014-09-16
Richard Mourn
Abstract The paper provides an introduction into IEEE-1394, AS5643 and related documents. It then explores the I/O Technology Suitability Study criteria used to originally select IEEE-1394b (Beta) as the Vehicle System Data Bus for the F-35 Joint Strike Fighter and update each criterion with new information based on more than a decade of experience and use in not only the F-35 but several other programs. Based on the suitability study criteria, the reader gains insight into how and why programs like the F-35, which implements dozens of AS5643/IEEE-1394 devices per plane, utilize AS5643/IEEE-1394 for its vehicle system network. This unprecedented use of a high speed (491.52Mb/s) serial interface on an aircraft proves the capability of AS5643/1394, and opens the door for higher bandwidth communication between the Control Computer and remote nodes. While I/O bandwidth is important, system level deterministic behavior is required for most vehicle system networks and AS5643 coupled with 1394 provides the required deterministic behavior.
Technical Paper
2014-09-16
Srikanth Gururajan, Mario Luca Fravolini, Matthew Rhudy, Antonio Moschitta, Marcello Napolitano
Abstract Recent catastrophic air crashes have shown that physical redundancy is not a foolproof option for failures on Air Data Systems (ADS) on an aircraft providing airspeed measurements. Since all the redundant sensors are subjected to the same environmental conditions in flight, a failure on one sensor could occur on the other sensors under certain conditions such as extreme weather; this class of failure is known in the literature as “common mode” failure. In this paper, different approaches to the problem of detection, identification and accommodation of failures on the Air Data System (ADS) of an aircraft are evaluated. This task can be divided into component tasks of equal criticality as Sensor Failure Detection and Identification (SFDI) and Sensor Failure Accommodation (SFA). Data from flight test experiments conducted using the WVU YF-22 unmanned research aircraft are used. Analytical redundancy is provided through a least squares modeling based approach and an extended Kalman filter approach to handle the Sensor Failure Accommodation (SFA) task.
Technical Paper
2014-09-16
Viacheslav Pshikhopov, Mikhail Medvedev, Victor Krukhmalev, Roman Fedorenko, Boris Gurenko
The paper describes methods for control of docking of two moving stratospheric airships. One of them (cruiser) implements cruising flight at the defined altitude with defined velocity. The other one (feeder) fulfills the mission of chasing the cruiser with following docking operations. Mathematical model of exact airships are used in the work. Instances of structural and algorithmic implementation based on position-trajectory controller. Simulation of docking control were accomplished with proposed methods.
Technical Paper
2014-09-16
Mario Luca Fravolini, Matthew Rhudy, Srikanth Gururajan, Silvia Cascianelli, Marcello Napolitano
Abstract A measurement device that is extremely important for Unmanned Aerial Vehicle (UAV) guidance and control purposes is the airspeed sensor. As the parameters of feedback control laws are conventionally scheduled as a function of airspeed, an incorrect reading (e.g. due to a sensor fault) of the Pitot-static tube could induce an incorrect feedback control action, potentially leading to the loss of control of the UAV. The objective of this study is to establish the accuracy and reliability of the two airspeed estimation techniques for eventual use as the basis for real-time fault detection of anomalies occurring on the Pitot-static tube sensor. The first approach is based on an Extended Kalman Filter (EKF) and the second approach is based on Least Squares (LS) modeling. The EKF technique utilizes nonlinear kinematic relations between GPS, Inertial Measurement Unit and Air Data System signals and has the advantage of independence from knowledge of the aircraft model. The LS method is based on explicit knowledge of the aircraft model and has the advantage of on-line computation of the airspeed estimate, with minimal computational effort.
Technical Paper
2014-09-16
Nicholas Ernest, Kelly Cohen, Corey Schumacher, David Casbeer
Abstract Looking forward to an autonomous Unmanned Combat Aerial Vehicle (UCAV) for future applications, it becomes apparent that on-board intelligent controllers will be necessary for these advanced systems. LETHA (Learning Enhanced Tactical Handling Algorithm) was created to develop intelligent managers for these advanced unmanned craft through the novel means of a genetic cascading fuzzy system. In this approach, a genetic algorithm creates rule bases and optimizes membership functions for multiple fuzzy logic systems, whose inputs and outputs feed into one another alongside crisp data. A simulation space referred to as HADES (Hoplological Autonomous Defend and Engage Simulation) was created in which LETHA can train the UCAVs intelligent controllers. Equipped with advanced sensors, a limited supply of Self-Defense Missiles (SDM), and a recharging Laser Weapon System (LWS), these UCAVs can navigate a pre-defined route through the mission space, counter enemy threats, and destroy mission-critical targets.
Technical Paper
2014-09-16
Yamina Boughari, Ruxandra Botez, Georges Ghazi, Florian Theel
Abstract The main goal of this flight control system is to achieve good performance with acceptable flying quality within the specified flight envelope while ensuring robustness for model variations, such as mass variation due to fuel burn. The Cessna Citation X aircraft linear model is presented for different flight conditions to cover the aircraft's flight envelope, on which a robust controller is designed using the H-infinity method optimized by two heuristic algorithms. The optimal controller was used to achieve satisfactory dynamic characteristics for the longitudinal and lateral stability control augmentation systems with respect to this aircraft's flying quality requirements. The weighting functions of the H-infinity method were optimised by using both genetic and differential evolution algorithms. The evolutionary algorithms gave very good results. This is the first time these algorithms have been used in this form to optimize H-infinity controllers on a business aircraft, respecting both flying quality requirements and robustness criteria as objective functions and avoiding the use of other computationally complicated algorithms.
Technical Paper
2014-09-16
Aurelie Beaugency, Marc Gatti, Didier Regis
Abstract Since 2000, avionics is facing several changes, mostly driven by technological improvements in the electronics industry and innovation requirements from aircraft manufacturers. First, it has progressively lost its technological leadership over innovation processes. Second, the explosion of the electronics consumer industry has contributed to shorten even more its technology life cycles, and promoted the use of COTS. Third, the increasing complexity of avionics systems, which integrate more and more functions, have encouraged new players to enter the market. The aim of this article is to analyze how technological changes can affect the competitiveness of avionics firms. We refer to criticality levels as a determinant of the market competitiveness. Certification processes and costs could stop new comers to bring innovations from the consumer electronics industry and protects traditional players. The study will compare three avionics systems regarding their patent dynamics since 1980: flight controls, Integrated Modular avionics and Head-Up Displays.
Book
2014-09-04
William C. Messner
Over the years, the DARPA Challenges in the United States have galvanized interest in autonomous cars, making them a real possibility in the mind of the public, but autonomous and unmanned vehicles have been increasingly employed in many roles on land, in the water, and in the air. Military applications have received a great deal of attention, with weaponized unmanned aircraft (drones) being the most prominent. However, unmanned vehicles with varying degrees of autonomy already have many civilian applications. Some of these are quite familiar (such as the Roomba autonomous vacuum cleaner), while others remain largely out of the public eye (such as autonomous farm equipment). Additional applications and more capable vehicles are rapidly coming to the markets in the years ahead. This book examines a number of economically important areas in which unmanned and autonomous vehicles, also understood here as autonomous technologies, are already used or soon will be. Co-published by SAE International and AUVSI, Autonomous Technologies: Applications That Matter will assist the reader in identifying profitable opportunities and avoiding costly misconceptions with respect to civilian applications of autonomous vehicle technologies as it brings together chapters on how air, water, and ground vehicles are becoming ever more used and appreciated.
WIP Standard
2014-08-04
This document, the JAUS Compliance and Interoperability Policy (ARP6012), recommends an approach to documenting the complete interface of an unmanned system or component in regard to the application of the standard set. While non-SAE AS-4 JAUS documents are referenced in this ARP they are not within the scope of this document and should be viewed as examples only.
WIP Standard
2014-08-04
This SAE Aerospace Information Report (AIR) discusses characteristics of data communications for the Joint Architecture for Unmanned Systems (JAUS). This document provides guidance on the aspects of transport media, unmanned systems and the characteristics of JAUS itself that are relevant to the definition of a JAUS transport specification.
WIP Standard
2014-07-31
This SAE Aerospace Standard (AS) defines the testing methods for all aerospace optic cables. The application of the test methods are defined in the slant sheets. Technical, dimensional, mechanical and operating performance requirements for the associated aerospace fiber optic cables are detailed in the applicable specification slant sheet. In the event of conflict between this standard and the slant sheet, the slant sheet shall take precedence.
Standard
2014-07-29
This document defines a set of standard application layer interfaces called JAUS Unmanned Ground Vehicle Services. JAUS Services provide the means for software entities in an unmanned system or system of unmanned systems to communicate and coordinate their activities. The Unmanned Ground Vehicle Services represent the platform-specific capabilities commonly found in UGVs, and augment the Mobilty Service Set [AS6009] which is platform-agnostic. At present ten (10) services are defined in this document.
WIP Standard
2014-07-18
The SAE Aerospace Information Report AIR5315 – Generic Open Architecture (GOA) defines “a framework to identify interface classes for applying open systems to the design of a specific hardware/software system.” [sae] JAUS Service (Interface) Definition Language defines an XML schema for the interface definition of services at the Class 4L, or Application Layer, and Class 3L, or System Services Layer, of the Generic Open Architecture stack (See Figure 1 below). The specification of JAUS services shall be defined according to the JAUS Service (Interface) Definition Language document.
WIP Standard
2014-07-09
To provide cross reference between test methods across the fiber optics industry.
Book
2014-07-08
This 2014 edition of the Automotive Cockpits and Dashboards Report is the latest in the series of reports by Supplier Business looking at trends and developments in the vehicle cockpit space. Over time we have seen many changes in terms of the design and structure of the main modules and components that go to make up the dashboard and cockpit element of the vehicle’s interior. In particular the increasing level of in-vehicle connectivity has caused interior designers to rethink the layout and content of the dashboard and center console. In this report the main trends and developments are highlighted, with particular reference to examples of the way in which the industry has responded to the challenge. The strongest influence on the vehicle’s cockpit and dashboard continues to be the requirement for in-vehicle connectivity. Consumer demand for seamless connectivity between home, office and vehicle dominates the cockpit’s interior design and structure. The technology required to provide the level of connectivity demanded by users is increasingly complex and, by necessity, has to embrace advanced driver active safety systems (ADAS) and the anticipated development of semi-autonomous and ultimately, fully autonomous vehicles.
Viewing 1 to 30 of 1891

Filter

  • Book
    27
  • Collection
    4
  • Magazine
    186
  • Technical Paper
    939
  • Standard
    735
  • Article
    0
  • Article
    0