Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 910
2017-07-10
Technical Paper
2017-28-1938
Shyam Sunder Manivannan, Gopkumar Kuttikrishnan, Rajesh Siva, Janarthanan C, G A Ramadass
Abstract The hybrid robot will be a battery operated four wheel drive vehicle with a rigid chassis for all terrain operation. The vehicle will be suited for various payloads based on applications with geological, atmospheric sensors and buried object identification at a depth of 8 to 100 m., etc. The vehicle will be remotely controlled through a RF signal, allows it to maneuver up to 5 km. The novelty of the design, is its capability for all terrain and ease of trafficability based on skid steering, self-alignment of sensors and vehicle traction in spite of possible inverted conditions and the vehicle can travel from land, snow, water and vice versa. The vehicle could be deployed for surveying coastline of water bodies, borderlines and also be extensively used in polar region for studying glacier aging and as advance vehicle for the convoys and polar mapping.
2017-05-10
Technical Paper
2017-01-1932
Thomas Herlitzius
The digital transformation offers Europe tremendous opportunities of more efficient production using Cyber Physical Systems (CPS), which will enable new concepts for future farming systems. The very fast development of information and communication technologies is driving the evolution of mobile machines into cyber-physical systems with virtually no limitations for communication. Automation is the most important trend in the development of agricultural mobile machines due to the open potential of efficiency increases at all levels (machine, process and farm operation). CPS technologies are going to deliver solutions at the system and enterprise level by supporting real time and strategic decisions while enabling much higher system transparency and controllability within the sustainability tri-angle.
2017-03-28
Journal Article
2017-01-0288
Hai Wu, Meng-Feng Li
Abstract The human-robot interaction (HRI) is involved in a lift assistant system of manufacturing assembly line. The admittance model is applied to control the end effector motion by sensing intention from force of applied by a human operator. The variable admittance including virtual damping and virtual mass can improve the performance of the systems. But the tuning process of variable admittance is un-convenient and challenging part during the real test for designers, while the offline simulation is lack of learning process and interaction with human operator. In this paper, the Iterative learning algorithm is proposed to emulate the human learning process and facilitate the variable admittance control design. The relationship between manipulate force and object moving speed is demonstrated from simulation data. The effectiveness of the approach is verified by comparing the simulation results between two admittance control strategies.
2017-03-28
Journal Article
2017-01-0293
Tina Hull
Abstract Recent advances in technology allow machine safeguarding to shift from a system that completely shuts down the hazardous part of a machine, regardless of the action, to one with a controlled response. This intelligent robotics safeguarding can be based on conditions such as the type of task, how it is performed, entry and exit locations, and the operator’s movement within the hazard zone. Such a strategy could increase production rates by allowing robots to operate at higher speeds within dynamic environments. When used as part of a preventative maintenance program, reliability data can predict component failure rates and reduce the probability that operators will access the hazard zone. Programming techniques, such as function blocks to monitor component usage, can be used to evaluate trends. SQL (Structured Query Language) databases can track access and frequency trends, which can lead to design improvements and indicate changes affecting the system.
2017-03-28
Technical Paper
2017-01-1677
Bharathi Krishnamoorthy, Jacob Eapen, Santosh kshirsagar, Giri Nammalwar, Torsten Wulf, Miguel Mancilla
Abstract Automotive industry is witnessing a significant growth in the number of Electronic Control Units (ECUs) and its features owing to the focused inclination towards customer preference, comfort, safety, environmental friendliness and governmental regulations. The software components are booming as the pivotal to cater to the technology-driven trends such as diverse mobility, autonomous driving, electrification, and connectivity. This necessitates exhaustive testing to ensure quality of the system as any unpredictable failures may impose severe financial and market risk on the OEM. The industry has largely supplemented Hardware-in-the-loop (HIL) testing to manual testing considering the testing constraints posed by the latter. Automation trends complement the demand for quick yet exhaustive testing prior to the market launch.
2016-10-25
Technical Paper
2016-36-0235
Juliana Lima da Silva Lopes, Cleber Albert Moreira Marques, Genildo de Moura Vasconcelos, Rafael Barreto Vieira, Flavio Fabricio Ventura de Melo Ferreira, Marcelo Henrique Souza Bomfim
Abstract This paper approaches the use of machine vision as an automation tool for verification tests in automotive Instrument Panel Cluster (IPC). A computer integrated with PXI modular instruments, machine vision software and Integrated Development Environment (IDE) composes the test system. The IPC is verified in closed-loop using the Hardware-in-the-Loop (HiL) technique in which the HiL system simulates all Electronic Control Units (ECUs) that interact with the IPC. Every simulated ECUs signals are sent to the IPC over CAN (Controller Area Network) bus or hardwired I/O using PXI modules integrated with IDE and its responses are captured by cameras. Using machine vision such images are subjected to Digital Image Processing (DIP) techniques as pattern matching, edge detection and Optical Character Recognition (OCR), which can be applied to interpret speedometer, tachometer, fuel gauges, display and warning lights.
2016-10-25
Technical Paper
2016-36-0372
Bahr Rogerio, Weller Tiago
Abstract The product development process in the automotive industry is constantly subject to several studies focused on trying to minimize the costs and reduce the time to product. However, it can be said that there's very little focus on the opportunity that lays in the CAD Automation possibilities through the use of a method called Knowledge Based Engineering (KBE), which consists in its core essence on the reuse of knowledge gained during previous projects, as well as a set of best design practices, applied through automation methods and artificial intelligence in the CAD models. The CAD process automation could represent a significant reduction in the project hours in the automotive product development, mainly because the processes related to it are well defined and structured. Besides that, new automotive products are usually predictable and systemic, allowing room for an efficient CAD automation.
2016-09-27
Technical Paper
2016-01-2079
Alexander Janssen, Thorsten Dillhoefer
The industry wide requirement of new highly flexible automated fastening systems in aircraft production has created the need for developing new fastening systems. This paper will focus on the development of the Frame Riveting Assembly Cell (FRAC) by BROETJE-Automation to meet this need. The new FRAC machine configuration is built for automated drilling and fastening of different aircraft type parts. It is highly flexible with a high speed positioning system mounted multifunction end effector. System travel is limited only by installed track length. The FRAC integrates well with conventional and reconfigurable automated fastening work holding tools.
2016-09-27
Journal Article
2016-01-2080
Carter L. Boad, Kevin Brandenstein
The newest generation of automated fastening machines require a feed system that is smaller, more flexible, and faster than any currently available. The feed system must be compact enough to fit on a robot base, yet have a capacity large enough to support unmanned production for hours. A large variety of fasteners must be supported and the entire system must be reloaded or reconfigured in minutes to match the next work piece being assembled by the machine. When requested by the part program, the correct fastener must be released directly and immediately into the feed tube to minimize cycle time. This paper describes a new “plate cartridge” feed system developed to meet these needs.
2016-09-27
Journal Article
2016-01-2082
Ralf Schomaker, Björn Knickrehm, Jürgen Langediers
Abstract In the frame of incremental product improvement, AIRBUS has developed and implemented a new innovative rapid decompression / pressure relieve concept for the cargo compartment area. The core change lays with detaching the complete cargo lining panels from the substructure in case of a rapid decompression in the cargo area instead of using dedicated blow in panels. In that way, pressure equilibrium can be achieved by air flow through the opened areas around the cargo lining panels rather than through specific blow out / blow in venting areas. The key for this is a self-detaching fastener AIRBUS has developed in an outstanding cooperation with ARCONIC Fastening Systems & Rings (former Alcoa Fastening Systems & Rings) in Kelkheim, Germany. These fasteners are installed to keep the cargo lining panels in place and tight against smoke in case of fire which is one of the main purposes for their use.
2016-09-27
Journal Article
2016-01-2081
Rodrigo Pinheiro, Robert Gurrola, Sead Dzebo
Abstract The installation of common threaded aerospace fasteners by the application of a torque to a nut or collar is made possible by an internal wrenching element or recess feature adapted to the threaded end of a pin, which accepts a mating anti-rotation key designed to partially balance the applied torque. In applications such as the mechanical joining of composite structures accomplished by wet clearance fit installations of permanent fasteners, high nut or collar seating torques not adequately opposed by frictional resistance at the contact surfaces of the fastener and joint members effectively shift a greater proportion of the torque reaction requirement onto the recess and mating anti-rotation key which in turn can experience high torsional stresses exceeding their design capability and result in frequent service failures.
2016-09-27
Technical Paper
2016-01-2078
Torsten Logemann
The demand of flexible and cost-efficient solutions for automated fastening systems inspired us, the BROETJE-Automation, to develop the robot and end-effector technology to fulfil the customer’s requirement for a highly accurate, automated robot based drill and fastening system for an aerospace application. This paper describes an innovative mobile robot platform for multiple uses in aviation industry. The base platform will be equipped with suitable modular units to meet the requirements of each customer exactly. The required absolute positioning accuracy is reached by using a special compensation package for the robot that was developed by BROETJE Automation. Several aircraft manufacturers are operating with this mobile cell works on single aisle and twin aisle programs. This solution demonstrates how standard robots equipped with a mature compensation method resulted in a highly flexible and cost-efficient light weight automation response.
2016-09-27
Technical Paper
2016-01-2077
Fatih Burak Sahin, Hans-Juergen Borchers, Cagatay Ucar
Abstract CFRP has been widely used in aerospace industries because of its high strength-to-weight ratio. However, drilling CFRP laminates is difficult due to the highly abrasive nature of the carbon fibers and low thermal conductivity of CFRP. Therefore for the manufacturers it is a challenge to drill CFRP materials without causing any delamination within the high quality requirements while also considering the costs of the process. This paper will discuss the process of drilling CFRP-Al stack ups within tight tolerances using a seven axis drilling robot. All components required for drilling are integrated in the drill end-effector. The pressure foot is extended in order to clamp the work piece, and then holes are drilled. The drilling process has four steps: moving to the fast approach level, controlled drill feed, countersink depth reach and drill retract. The cutter diameter range chosen for this paper is Ø 4.0 mm and Ø 7.9 mm.
2016-09-27
Technical Paper
2016-01-2104
Robert Flynn, Kevin Payton-Stewart, Patrick Brewer, Ryan W. Davidge
Abstract Figure 1 Global 7000 Business Jet. Photo credit: Robert Backus. The customer’s assembly philosophy demanded a fully integrated flexible pulse line for their Final Assembly Line (FAL) to assemble their new business jets. Major challenges included devising a new material handling system, developing capable positioners and achieving accurate joins while accommodating two different aircraft variants (requiring a “flexible” system). An additional requirement was that the system be easily relocated to allow for future growth and reorganization. Crane based material handling presents certain collision and handover risks, and also present a logistics challenge as cranes can become overworked. Automated guided vehicles can be used to move large parts such as wings, but the resulting sweep path becomes a major operational limitation. The customer did not like the trade-offs for either of these approaches.
2016-09-27
Technical Paper
2016-01-2096
Simon Schnieders, Dirk Eickhorst
Abstract Drilling of high-strength titan material and composites in combination creates complex challenges in order to achieve required productivity and quality. Long spiral chips are characteristically for the titan drilling process, which leads to e.g. chip accumulation, high thermomechanical load, surface damages and excessive tool wear. The basic approach is the substitution of today’s peck drilling as current solution to this problem and the implementation of a vibration assisted drilling, so called micro-peck-drilling-process, to generate a kinematic chip breakage in a significant more efficient way. To meet perfectly the requirements regarding rates, quality and automation level, Broetje-Automation as system integrator has investigated and developed the implementation of different alternative high-performance systems and methods to approach the optimal oscillation movement of the tool.
2016-09-27
Technical Paper
2016-01-2103
Eric Barton
This technical paper details an optimized Drivmatic machine design delivered to a Tier 1 aero structure supplier to automate drilling and installation of rivets, hi-loks, lockbolts & swage collars for individual fuselage panel assemblies with high throughput & strict quality requirements. While certain robot solutions continue to be explored for specific applications at many Tier 1 aero structure suppliers, robot payload capacity has limitations beyond certain criteria, which often times point towards an alternative machine design as in this case study. A typical approach for adding more automation is to allocate shop floor space based on the solution’s foot print, however contrary to most approaches this solution had to be designed to fit within a pre-determined factory footprint over a geographic location with a high water table that would not permit a foundation.
2016-09-27
Technical Paper
2016-01-2095
Agata Suwala, Lucy Agyepong, Andrew Silcox
Abstract Reduction of overall drag to improve aircraft performance has always been one of the goals for aircraft manufacturers. One of the key contributors to decreasing drag is achieving laminar flow on a large proportion of the wing. Laminar flow requires parts to be manufactured and assembled within tighter tolerance bands than current build processes. Drilling of aircraft wings to the tolerances demanded by laminar flow requires machines with the stiffness and accuracy of a CNC machine while having the flexibility and envelope of an articulated arm. This paper describes the development and evaluation of high accuracy automated processes to enable the assembly of a one-off innovative laminar flow wing concept. This project is a continuation of a previously published SAE paper related to the development of advanced thermally stable and lightweight assembly fixture required to maintain laminar flow tolerances.
2016-09-27
Technical Paper
2016-01-2098
Christophe Vandaele, Didier Friot, Simon Marry, Etienne Gueydon
Abstract With more than 10 000 aircrafts in their order backlog Aircraft manufacturers focus on automated assembly is of critical importance for the future of efficient production assembly. Moreover to obtain maximum benefit from automation, it is necessary to achieve not only an automated assembly cell, but also a real breakthrough in fastener technology. The optimum solution, known as “One Side Assembly”, performs the whole assembly sequence from one side of the structure using an accurate robot arm equipped with a multifunction end effector and high performance fasteners. This configuration provides an efficient and flexible automated installation process, superior to current solutions which are typically, large scale, capital intensive systems, which still require operators to complete or control the fastener installation. The search for a technological breakthrough in this domain has been targeted for more than 15 years by many aircraft manufacturers.
2016-09-27
Technical Paper
2016-01-2097
Sylvain Laporte, Cosme De Castelbajac, Mathieu Ladonne
Abstract The Vibration Assisted Drilling (VAD) process has been implemented in Automated Drilling Equipment (ADE) on an industrial scale since 2011. Today more than 11000 ADEs are currently used on aircraft assembly lines. As well as drawing up a short report on the use of this new process, the authors make an assessment on new challenges that VAD has to face up. Indeed production rates are increasing and ADE manufacturers improve their technologies, one of the most recent and major development concerning the electrical motorization of the machines. These evolutions are as many opportunities for the VAD provided you have a clever understanding as well as an expert knowledge of the process. Thus the authors propose a new dynamic model of the whole VAD system which integrates the behavior of the part, cutting tool/material pair and the machine. The confrontation of model results and experimental validation tests demonstrates the relevance of the works.
2016-09-27
Technical Paper
2016-01-2089
Jose Guerra cEng, Miguel Angel Castillo
Abstract Aernnova experience on automatic drilling operations started in 1,999. The company signed a new contract with Embraer, to design, manufacture and assembly several structures of the model 170. It was big news for the company. But after that minute of pride, manufacturing engineering people of the company started to think about the process to assemble those big panels of the Horizontal Stabilizer, Vertical Stabilizer and Rear Fuselages in the best Quality and Cost. There were a lot of rows of rivets to install. Some ideas arisen, but the final decision was to forget the available processes at that time and think about to automate the drilling, countersink and riveting of the stringers, doublers and window frames to the panels. There were a lot of doubts, figures to do and obstacles, but the company took the decision of going ahead with that process. That step changed the state of the art at that time in the company.
2016-09-27
Technical Paper
2016-01-2093
Rainer Mueller, Matthias Vette, Ortwin Mailahn
Abstract Many assembly processes, particularly in the manufacture of aircraft components, are still carried out by humans manually. In addition to rationalization aspects, high quality requirements, non-ergonomic activities, the lack of well-qualified workers etc. may require the use of automation technology. Through novel possibilities of human-robot-cooperation these challenges can be met through a skills-based division of labor. Tasks are assigned to humans and robots in a way that the respective strengths can be used most efficiently. This article presents, how assembly processes can get empowered for human-robot-cooperation, using a specific work description for humans and robots, an assembly priority chart and suitable robot programs, to prepare for a skills-based task assignment. In the area of formerly exclusively manual assembly, the operations for the assembly of the product must first be described in detail.
2016-09-27
Technical Paper
2016-01-2091
Raul Cano, Oscar Ibanez de Garayo, Miguel Angel Castillo, Ricardo Marin, Hector Ascorbe, Jose Ramon de los Santos
Abstract The aim of this paper is to present a robust and low-cost automatic system for drilling aluminum stacks, as well as an integral methodology for the design of tool trajectories and the control of the drilling process itself. The proposed system employs a high accuracy robotic arm, a commercial spindle head and a specially developed SCADA, which enables it to load tool trajectories designed by using any software application. Furthermore, this SCADA is useful to monitor the main parameters of the drilling process for anticipating problems related to the unexpected tool wear or for a quick response in case of tool collision. A special jig for positioning the stack to be drilled is designed to increase the robot accessibility. In this work, tests are performed for optimizing the cutting parameters of the robotic system in order to maximize the accuracy and the surface finishing of the holes.
2016-09-27
Technical Paper
2016-01-2083
Steven P. Smith
Abstract This paper traces the development of a temporary blind fastener in the aircraft industry. These are used with automated drilling machines as part of an integrated assembly process where one-way assembly is inappropriate. Traditional blind temporary fasteners have a high protrusion (stand-off) on the side they are installed from, effectively preventing automated drilling. No suitable fastener was available on the market and existing suppliers were uninterested in development at the time. A set of requirements were created out of the need to improve efficiency of A380 wing assembly. However focus changed as the A350XWB programme demanded such a fastener. Testing, development and Stress approval are described leading to full deployment. Finally the paper looks at the additional factors which are required to successfully introduce a new standard of temporary fastening process.
2016-09-27
Journal Article
2016-01-2085
Kyle Pritz, Brent Etzel, Zheng Wei
The automation cycle time of wing assembly can be shortened by the automated installation of single-sided temporary fasteners to provide temporary part clamping and doweling during panel drilling. Feeding these fasteners poses problems due to their complexity in design and overall heavy weight. In the past, Electroimpact has remotely fed these fasteners by blowing them through pneumatic tubing. This technique has resulted in occasional damage to fasteners during delivery and a complex feed system that requires frequent maintenance. Due to these issues, Electroimpact has developed a new fully automated single-sided temporary fastening system for installation of the LISI Clampberry fasteners in wing panels for the C919 wing factory in Yanliang, China. The feed system stores fasteners in gravity-fed cartridges on the end effector near the point of installation.
2016-09-27
Technical Paper
2016-01-2113
Raphael Reinhold
Abstract Resin transfer molding (RTM) is gaining importance as a particularly economical manufacturing method for composites needed in the automotive and aerospace industries. With this method, the component is first shaped with dry fiber reinforcements in a so-called “preforming process” before the mold is placed in a RTM tool, injected with resin and cured. In recent years, Broetje-Automation has been developing innovative product solutions that are specially designed for these preforming processes and suitable for industrial use. For the first time ever, Broetje’s Composite Preforming Cell (CPC) makes large-quantity serial production of complex and near-net-shape preforms for composite components using this RTM process possible. With the additional integration of the patented 3D Composite Handling System Broetje impressively demonstrates its service and product portfolio in the area of innovative composite manufacturing technology and its know-how as a complete system integrator.
2016-09-27
Technical Paper
2016-01-2111
Juan Carlos Antolin-Urbaneja, Juan Livinalli, Mildred Puerto, Mikel Liceaga, Antonio Rubio, Angel San-Roman, Igor Goenaga
Abstract Gaps in composite structures are a risky factor in aeronautical assemblies. For mechanically joined composite components, the geometrical conformance of the part can be problematic due to undesired or unknown re-distribution of loads within a composite component, with these unknowns being potentially destructive. To prevent unnecessary preloading of a metallic structure, and the possibility of cracking and delamination in a composite structure, it is important to measure all gaps and then shim any gaps greater than 127 microns. A strategy to overcome the high relative tolerances for assemblies lies in the automated manufacturing of shims for the gaps previously predicted through the evaluation of their volumes via a simulation tool. This paper deals with the development of a special end-effector prototype to enable the shimming of gaps in composites structures using a pre-processed geometry.
2016-09-27
Technical Paper
2016-01-2109
Michael Morgan, Caroline McClory, Colm Higgins, Yan Jin, Adrian Murphy
Aerospace structures are typically joined to form larger assemblies using screw lock or swage lock fasteners or rivets. Countersunk fasteners are used widely in the aerospace industry on flying surfaces to reduce excrescence drag and increase aircraft performance. These fasteners are typically installed to a nominal countersink value which leaves them flush to the surface before being locked into position. The Northern Ireland Technology Centre (NITC) at Queen’s University Belfast has developed and demonstrated two processes which enable high tolerance flush fastening of countersunk fasteners: The ‘Flush Install’ process produces countersunk holes based on the specific geometry of each individual fastener; The ‘Fettle Flush’ process accurately machines fasteners to match the surrounding surface. Flushness values well within the allowable tolerances have been demonstrated for both Flush Install and Fettle Flush processes.
2016-09-27
Technical Paper
2016-01-2110
Ilker Erdem, Peter Helgosson, Ashwin Gomes, Magnus Engstrom
Abstract The ability to adapt to rapidly evolving market demands continues to be the one of the key challenges in the automation of assembly processes in the aerospace industry. To meet this challenge, industry and academia have made efforts to automate flexible fixturing. LOCOMACHS (Low Cost Manufacturing and Assembly of Composite and Hybrid Structures) - a European Union funded project with 31 partners - aims to address various aspects of aero-structure assembly with a special attention directed to the development of a new build philosophy along with relevant enabling technologies. This paper aims to present the results on the developed wing box build philosophy and the integration of automated flexible tooling solutions into the assembly process. The developed solution constitutes the use of synchronized hexapods for the assembly of front spar to upper cover whereas another hexapod was developed to install a rib by using of a force feedback sensor.
2016-09-27
Technical Paper
2016-01-2108
Marc Fette, Kim Schwake, Jens Wulfsberg, Frank Neuhaus, Manila Brandt
Abstract The rising demand for civil aircraft leads to the development of flexible and adaptive production systems in aviation industry. Due to economic efficiency, operational accuracy and high performance these manufacturing and assembly systems must be technologically robust and standardized. The current aircraft assembly and its jigs are characterized by a high complexity with poor changeability and low adaptability. In this context, the use of industrial robots and standardized jigs promise highly flexible and accurate complex assembly operations. This paper deals with the flexible and adaptable aircraft assembly based on industrial robots with special end-effectors for shaping operations. By the development and use of lightweight gripper system made of carbon fiber reinforced plastics the required scaling, robustness and stiffness of the whole assembly system can be realized.
2016-09-27
Technical Paper
2016-01-2107
Rainer Mueller, Matthias Vette, Matthias Scholer, Jan Ball
Abstract The global competition challenges aircraft manufactures in high wage countries. The assembly of large components is very difficult and distinguished by fixed position assembly. Many complex assembly processes such as aircraft assembly are manually done by highly skilled workers. The aircraft manufactures deal with a varying number of items, increasing number of product variants and strict product requirements. During the assembly process hundreds of clips, ties and stringers as well as thousands of rivets must be assembled. To remain competitive in global competition, companies in high wage countries like Germany must insure a continuously high productivity and quality level. To achieve a reduction of cycle times with a simultaneous increase in quality, supportive assistance systems for visual support, documentation and organization within the assembly are required. One example for visual assistance systems are laser projection systems.
Viewing 1 to 30 of 910