Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 926
2017-09-23
Technical Paper
2017-01-1987
Renjie Li, Shengbo Li, Hongbo Gao, Keqiang Li, Bo Cheng, Deyi Li
Abstract Vehicle automation is a fundamental approach to reduce traffic accidents and driver workload. However, there is a notable risk of pushing human drivers out of the control loop before automation technology fully matures. Cooperative driving (or vehicle co-piloting) is a novel paradigm which is defined as the vehicle being jointly navigated by a human driver and an automatic controller through shared control technology. Indirect shared control is an emerging shared control method, which is able to realize cooperative driving through input complementation instead of haptic guidance. In this paper we first establish an indirect shared control method, in which the driver’s commanded input and the controller’s desired input are balanced with a weighted summation. Thereafter, we propose a predictive model to capture driver adaptation and trust in indirect shared control.
2017-09-19
Technical Paper
2017-01-2076
Dave Cobcroft
Paper Title: IPAC 180 Author: Thorsten Dillhoefer, Broetje-Automation GmbH Mailing Address: Broetje-Automation GmbH Am Autobahnkreuz 14 26180 Rastede Germany Phone: +49 (0) 4402 966-300 Fax: +49 (0) 4402 966-289 E-Mail: Thorsten.dillhoefer@broetje-automation.de Paper Content: To increase the accessibility and maintainability of our well known IPAC automation concept, we have designed a new version of this time proven system for 180 degree super panel assemblies. This new design includes also an innovative “T” lower ram configuration, high speed positioning, innovative operator interfaces, as well as an optimized platform concept to reduce the maintenance and set up of the machine thereby increasing overall throughput.
2017-09-19
Technical Paper
2017-01-2075
Burton Bigoney, Nicholas Huddleston
Electroimpact and Lockheed Martin have developed an automated drilling and fastening system for C-130J aft fuselage panels. Numerous design and manufacturing challenges were addressed to incorporate the system into Lockheed Martin’s existing manufacturing paradigm and to adapt Electroimpact’s existing line of riveting machines for manufacture of these legacy aircraft parts. Challenges to automation included design of a very long yet sufficiently rigid and lightweight offset riveting anvil for fastening around deep circumferential frames, automated feeding of very short, “square” rivets in which the length is similar to the head diameter, creation of part programs and simulation models for legacy parts with no existing 3d manufacturing data, and crash protection for the aircraft part from machine collisions, given the uncertainties inherent in the model and the unique geometry of the aircraft parts.
2017-09-19
Technical Paper
2017-01-2078
Eric Barton, Rick Wolf
The focus of this technical paper is a unique automatic fastening system configuration for loading, positioning & unloading pre-tacked door assemblies within a static C-Frame Drivmatic fastening machine using an off-the-shelf, high accuracy Fanuc robot. In 2011, PMC was awarded a significant contract for supplying commercial OEM aircraft doors and recognized automation was the most feasible approach for fastening each door assembly. At the time of contract award, PMC was an established aero structure supplier with significant automation capability for machining high tolerance parts & assemblies and manual fastening resources to support many different OEM programs however PMC did not have automatic fastening experience or capability. In support of this new Tier-2 contract, PMC reached out to Gemcor to propose a collaborative robot solution for automatically fastening 5 different door assemblies that were historically fastened using a semi-automatic configuration.
2017-09-19
Technical Paper
2017-01-2084
Karl-Erik Neumann
True Mobile/Portable Drilling & Machining, a Paradigm Shift in Manufacturing The evolving Aerospace manufacturing environment has created challenges that until now, are not achievable with standard machine tools, large monumental gantry style machines, robots or even manually. The solution is a lightweight, portable, modular, mobile solution capable of machining to high tolerances, with minimal time and effort to relocate to a different area, and capable of machining a different part, or be reconfigured to machine in a different orientation…….at an affordable price. With the carbon fiber PKM mounted on the flexible mobile manufacturing stand, the module can be simply relocated using a standard fork lift to any area of the factory. The module can also be easily removed from the mobile platform and mounted in a desired location, in any orientation. It can also can be disassembled into modules, and reconstructed in an area, that is not typically accessible by machines or robots.
2017-09-19
Technical Paper
2017-01-2088
Long Yu, Qingzhen Bi PhD, Yilian Zhang, Yuhan Wang
A novel normal measurement device for robotic drilling and countersinking has been developed in this paper. This device is mainly composed of three contact displacement sensors and a spherically compliant clamp pad. The compliance of the clamp pad allows it to be perpendicular to the part when the Multi-Function End Effector (MFEE) drives it to clamp the part surface prior to drilling, while the displacement sensors are used to measure the movement of the clamp pad relative to the MFEE. Once the sensors’ position is calibrated, the rotation angle of the clamp pad can be calculated by the displacement of the sensors. Then, the normal adjustment of MFEE is obtained, and the adjustment process can be achieved by the Tool Center Point (TCP) function of robot. Thus, an innovative method based on laser tracker to identify the position of sensors is proposed.
2017-09-19
Technical Paper
2017-01-2100
Carter L. Boad
A fully automated off-line cartridge filling station has been commissioned to support the new Boeing SAL production cell. The filing station uses automated fastener feed technology that is typically found on the machines themselves. Incorporating this technology off-line in place of the traditional manual handling processes extends the benefits of automation beyond the main manufacturing cell. A single operator is able to keep up with the demand of eight production fastening machines while maintaining the highest levels of accuracy and quality. Additional benefits to this application of automation include reduction of the operators exposure to risks associated with manual handling and repetitive tasks.
2017-09-19
Technical Paper
2017-01-2081
Richard Kasler, Agata Suwala, Ashwin Gomes
One way assembly of aero structures has the potential to significantly reduce build times. One of the solutions which goes towards achieving this philosophy is the use of a ‘C' clamping automated drilling system. The Manufacturing Technology Centre has developed, manufactured and tested a ‘C' clamping automated drilling unit to overcome many of the limitations of current designs which prevent their use on a broader range of structures. The drilling unit addresses issues with inter-stack burrs, access, size and the weight restrictions as well as economic factors. The technical paper will present the outcomes from the design and manufacture of the drilling unit that is to be used within restricted access areas as either a hand held device or as a robotic end effector, free from any cables or hoses, allowing full and unhindered articulation of any robot motion.
2017-09-19
Technical Paper
2017-01-2094
Tyler Everhart
Abstract Electroimpact, in collaboration with Boeing, has developed an advanced robotic assembly cell, dubbed “The Quadbots.” Using Electroimpact’s patented Accurate Robot technology and multi-function end effector (MFEE), each robot can drill, countersink, inspect hole quality, apply sealant, and insert fasteners into the part. The cell consists of 4 identical machines simultaneously working on a single section of the Boeing 787 fuselage, two on the left, and two on the right. These machines employ “collision avoidance” a new feature in their software to help them work more synchronously. The collision avoidance software uses positional feedback from external safety rated encoders mounted to the motors on the robot. From this feedback, safe spaces, in the form of virtual boundaries can be created. Such that a robot will stop and wait if the adjacent robot is in, or going to move into its programmed work envelope.
2017-09-19
Technical Paper
2017-01-2095
Timothy Jackson
Abstract The advent of accuracy improvement methods in robotic arm manipulators have allowed these systems to penetrate applications previously reserved for larger, robustly supported machine architectures. A benefit of the relative reduced size of serial-link robotic systems is the potential for their mobilization throughout a manufacturing environment. However, the mobility of a system offers unique challenges in maintaining the high-accuracy requirement of many applications, particularly in aerospace manufacturing. Discussed herein are several aspects of mechanical design, control, and accuracy calibration required to retain accurate motion over large volumes when utilizing mobile articulated robotic systems. A number of mobile robot system architectures and their measured static accuracy performance are provided in support of the particular methods discussed.
2017-09-19
Technical Paper
2017-01-2096
Rainer Mueller, Matthias Vette, Aaron Geenen, Tobias Masiak
Abstract Assembly processes in aircraft production are difficult to automate due to technical risks. Examples of such technical challenges include small batch sizes and large product dimensions as well as limited work space for complex joining processes and organization of the assembly tasks. A fully automated system can be expensive and requires a large amount of programming knowledge. For these reasons, ZeMA believes a semi-automated approach is the most effective means of success for optimizing aircraft production. Many methods can be considered semi automation, one of which is Human-Robot-Collaboration. ZeMA will use the example of a riveting process to measure the advantages of Human-Robot-Collaboration systems in aircraft structure assembly. In the assembly of the aircraft aft section the pressure bulkhead is mounted with a barrel section using hundreds of rivets. This assembly process is a non-ergonomic and burdensome task in which two humans must work cooperatively.
2017-09-19
Journal Article
2017-01-2165
Christian Moeller, Hans Christian Schmidt, Philip Koch, Christian Boehlmann, Simon Kothe, Jörg Wollnack, Wolfgang Hintze
The high demand of efficient large scale machining operations by concurrently decreasing operating time and costs has led to an increasing usage of industrial robots in contrast to large scaled machining centers. The main disadvantage of industrial robots used for machining processes is their poor absolute accuracy, caused by the serial construction, resilience of gearings and sensitivity for temperature changes. Additionally high process forces that occur during machining of CFRP structures in aerospace industry lead to significant path errors due to low structural stiffness of the robot kinematic. These errors cannot be detected by means of motor encoders. That is why calibration processes and internal control laws have no effect on errors caused by elastic deformation. In this research paper an approach for increasing the absolute accuracy of an industrial milling robot with help of a laser tracker system during machining tasks will be presented.
2017-09-19
Technical Paper
2017-01-2149
Cameron S. Gillespie
Abstract As carbon fiber reinforced plastics (CFRP) become more integrated into the design of large single piece aircraft structures, aircraft manufacturers are demanding higher speed and efficiency in Automated Fiber Placement (AFP) deposition systems. To facilitate the manufacturing of large surface area and low contour parts (wing skins, in this case) at a high production rate, Electroimpact has developed a new AFP head consisting of 20 1.5 inch wide pre-impregnated carbon tows. The new head design has been named the ‘OH20’, short for ‘One and a Half Inch, 20 Tows’. This AFP head format creates a deposition swath over 30 inches wide when all 20 tows are active. A total of four of these AFP heads have been integrated with a quick change robotic tool changer on two high speed, high acceleration, and high accuracy moving beam gantries.
2017-09-19
Technical Paper
2017-01-2150
Joshua Cemenska, Todd Rudberg, Michael Henscheid, Andrew Lauletta, Bradley Davis
Abstract In AFP manufacturing systems, manually inspection of parts consumes a large portion of total production time and is susceptible to missing defects. The aerospace industry is responding to this inefficiency by focusing on the development of automated inspection systems. The first generation of automated inspection systems is now entering production. This paper reviews the performance of the first generation system and discusses reasonable expectations. Estimates of automated inspection time will be made, and it will be shown that the automated solution enables a detailed statistical analysis of manufactured part quality and provides the data necessary for statistical process control. Data collection allows for a reduction in rework because not all errors need to be corrected. Expectations will be set for the accuracy for both ply boundary and overlap/gap measurements. The time and resource cost of development and integration will also be discussed.
2017-09-19
Technical Paper
2017-01-2166
Hendrik Susemihl, Christoph Brillinger, Sven Philipp Stürmer, Stephan Hansen, Christian Boehlmann, Simon Kothe, Jörg Wollnack, Wolfgang Hintze
Abstract The demand for higher production rates in aircraft industry requests more flexible manufacturing solutions. A bottleneck in production is the machining of large components by vast portal machines. Time-consuming referencing processes result in non-satisfying cost-effectiveness of these high-invest-machines. Mobile robot-based solutions are able to operate simultaneously which increases the productivity significantly. However, due to the limited workspace of robots, machining tasks have to be divided and long trajectories are separated in single overlapping segments. Thus high-accuracy referencing strategies are required to achieve desired production tolerances. In this publication different advanced optical reference strategies will be discussed taking the inhomogeneous behavior of a mobile robotic machining system into account.
2017-07-10
Technical Paper
2017-28-1938
Shyam Sunder Manivannan, Gopkumar Kuttikrishnan, Rajesh Siva, Janarthanan C, G A Ramadass
Abstract The hybrid robot will be a battery operated four wheel drive vehicle with a rigid chassis for all terrain operation. The vehicle will be suited for various payloads based on applications with geological, atmospheric sensors and buried object identification at a depth of 8 to 100 m., etc. The vehicle will be remotely controlled through a RF signal, allows it to maneuver up to 5 km. The novelty of the design, is its capability for all terrain and ease of trafficability based on skid steering, self-alignment of sensors and vehicle traction in spite of possible inverted conditions and the vehicle can travel from land, snow, water and vice versa. The vehicle could be deployed for surveying coastline of water bodies, borderlines and also be extensively used in polar region for studying glacier aging and as advance vehicle for the convoys and polar mapping.
2017-06-26
Solution Notes
SN-0001
Automating a manufacturing process often comes with substantial investment or sustained operational costs of complex subsystems. But, by reducing complexity and using technologically mature components, it is possible to develop viable scaled and robust automated solutions. For the past several years, aerospace manufacturers have endeavored to automate manufacturing processes as much as possible for both production efficiencies and competitive advantage. Automating processes like drilling, fastening, sealing, painting, and composite material production have reaped a wide range of benefits; from improving quality and productivity to lowering worker ergonomic risks. The results have improved supply chains from small component manufacturers all the way up to airframe assemblers. That said, automation can be very expensive, and difficult to introduce when a product is anywhere beyond the beginning of its life cycle.
2017-05-10
Technical Paper
2017-01-1932
Thomas Herlitzius
The digital transformation offers Europe tremendous opportunities of more efficient production using Cyber Physical Systems (CPS), which will enable new concepts for future farming systems. The very fast development of information and communication technologies is driving the evolution of mobile machines into cyber-physical systems with virtually no limitations for communication. Automation is the most important trend in the development of agricultural mobile machines due to the open potential of efficiency increases at all levels (machine, process and farm operation). CPS technologies are going to deliver solutions at the system and enterprise level by supporting real time and strategic decisions while enabling much higher system transparency and controllability within the sustainability tri-angle.
2017-03-28
Technical Paper
2017-01-1677
Bharathi Krishnamoorthy, Jacob Eapen, Santosh kshirsagar, Giri Nammalwar, Torsten Wulf, Miguel Mancilla
Abstract Automotive industry is witnessing a significant growth in the number of Electronic Control Units (ECUs) and its features owing to the focused inclination towards customer preference, comfort, safety, environmental friendliness and governmental regulations. The software components are booming as the pivotal to cater to the technology-driven trends such as diverse mobility, autonomous driving, electrification, and connectivity. This necessitates exhaustive testing to ensure quality of the system as any unpredictable failures may impose severe financial and market risk on the OEM. The industry has largely supplemented Hardware-in-the-loop (HIL) testing to manual testing considering the testing constraints posed by the latter. Automation trends complement the demand for quick yet exhaustive testing prior to the market launch.
2017-03-28
Journal Article
2017-01-0288
Hai Wu, Meng-Feng Li
Abstract The human-robot interaction (HRI) is involved in a lift assistant system of manufacturing assembly line. The admittance model is applied to control the end effector motion by sensing intention from force of applied by a human operator. The variable admittance including virtual damping and virtual mass can improve the performance of the systems. But the tuning process of variable admittance is un-convenient and challenging part during the real test for designers, while the offline simulation is lack of learning process and interaction with human operator. In this paper, the Iterative learning algorithm is proposed to emulate the human learning process and facilitate the variable admittance control design. The relationship between manipulate force and object moving speed is demonstrated from simulation data. The effectiveness of the approach is verified by comparing the simulation results between two admittance control strategies.
2017-03-28
Journal Article
2017-01-0293
Tina Hull
Abstract Recent advances in technology allow machine safeguarding to shift from a system that completely shuts down the hazardous part of a machine, regardless of the action, to one with a controlled response. This intelligent robotics safeguarding can be based on conditions such as the type of task, how it is performed, entry and exit locations, and the operator’s movement within the hazard zone. Such a strategy could increase production rates by allowing robots to operate at higher speeds within dynamic environments. When used as part of a preventative maintenance program, reliability data can predict component failure rates and reduce the probability that operators will access the hazard zone. Programming techniques, such as function blocks to monitor component usage, can be used to evaluate trends. SQL (Structured Query Language) databases can track access and frequency trends, which can lead to design improvements and indicate changes affecting the system.
2016-10-25
Technical Paper
2016-36-0372
Bahr Rogerio, Weller Tiago
Abstract The product development process in the automotive industry is constantly subject to several studies focused on trying to minimize the costs and reduce the time to product. However, it can be said that there's very little focus on the opportunity that lays in the CAD Automation possibilities through the use of a method called Knowledge Based Engineering (KBE), which consists in its core essence on the reuse of knowledge gained during previous projects, as well as a set of best design practices, applied through automation methods and artificial intelligence in the CAD models. The CAD process automation could represent a significant reduction in the project hours in the automotive product development, mainly because the processes related to it are well defined and structured. Besides that, new automotive products are usually predictable and systemic, allowing room for an efficient CAD automation.
2016-10-25
Technical Paper
2016-36-0235
Juliana Lima da Silva Lopes, Cleber Albert Moreira Marques, Genildo de Moura Vasconcelos, Rafael Barreto Vieira, Flavio Fabricio Ventura de Melo Ferreira, Marcelo Henrique Souza Bomfim
Abstract This paper approaches the use of machine vision as an automation tool for verification tests in automotive Instrument Panel Cluster (IPC). A computer integrated with PXI modular instruments, machine vision software and Integrated Development Environment (IDE) composes the test system. The IPC is verified in closed-loop using the Hardware-in-the-Loop (HiL) technique in which the HiL system simulates all Electronic Control Units (ECUs) that interact with the IPC. Every simulated ECUs signals are sent to the IPC over CAN (Controller Area Network) bus or hardwired I/O using PXI modules integrated with IDE and its responses are captured by cameras. Using machine vision such images are subjected to Digital Image Processing (DIP) techniques as pattern matching, edge detection and Optical Character Recognition (OCR), which can be applied to interpret speedometer, tachometer, fuel gauges, display and warning lights.
2016-09-27
Technical Paper
2016-01-2108
Marc Fette, Kim Schwake, Jens Wulfsberg, Frank Neuhaus, Manila Brandt
Abstract The rising demand for civil aircraft leads to the development of flexible and adaptive production systems in aviation industry. Due to economic efficiency, operational accuracy and high performance these manufacturing and assembly systems must be technologically robust and standardized. The current aircraft assembly and its jigs are characterized by a high complexity with poor changeability and low adaptability. In this context, the use of industrial robots and standardized jigs promise highly flexible and accurate complex assembly operations. This paper deals with the flexible and adaptable aircraft assembly based on industrial robots with special end-effectors for shaping operations. By the development and use of lightweight gripper system made of carbon fiber reinforced plastics the required scaling, robustness and stiffness of the whole assembly system can be realized.
2016-09-27
Technical Paper
2016-01-2110
Ilker Erdem, Peter Helgosson, Ashwin Gomes, Magnus Engstrom
Abstract The ability to adapt to rapidly evolving market demands continues to be the one of the key challenges in the automation of assembly processes in the aerospace industry. To meet this challenge, industry and academia have made efforts to automate flexible fixturing. LOCOMACHS (Low Cost Manufacturing and Assembly of Composite and Hybrid Structures) - a European Union funded project with 31 partners - aims to address various aspects of aero-structure assembly with a special attention directed to the development of a new build philosophy along with relevant enabling technologies. This paper aims to present the results on the developed wing box build philosophy and the integration of automated flexible tooling solutions into the assembly process. The developed solution constitutes the use of synchronized hexapods for the assembly of front spar to upper cover whereas another hexapod was developed to install a rib by using of a force feedback sensor.
2016-09-27
Technical Paper
2016-01-2107
Rainer Mueller, Matthias Vette, Matthias Scholer, Jan Ball
Abstract The global competition challenges aircraft manufactures in high wage countries. The assembly of large components is very difficult and distinguished by fixed position assembly. Many complex assembly processes such as aircraft assembly are manually done by highly skilled workers. The aircraft manufactures deal with a varying number of items, increasing number of product variants and strict product requirements. During the assembly process hundreds of clips, ties and stringers as well as thousands of rivets must be assembled. To remain competitive in global competition, companies in high wage countries like Germany must insure a continuously high productivity and quality level. To achieve a reduction of cycle times with a simultaneous increase in quality, supportive assistance systems for visual support, documentation and organization within the assembly are required. One example for visual assistance systems are laser projection systems.
2016-09-27
Technical Paper
2016-01-2104
Robert Flynn, Kevin Payton-Stewart, Patrick Brewer, Ryan W. Davidge
Abstract Figure 1 Global 7000 Business Jet. Photo credit: Robert Backus. The customer’s assembly philosophy demanded a fully integrated flexible pulse line for their Final Assembly Line (FAL) to assemble their new business jets. Major challenges included devising a new material handling system, developing capable positioners and achieving accurate joins while accommodating two different aircraft variants (requiring a “flexible” system). An additional requirement was that the system be easily relocated to allow for future growth and reorganization. Crane based material handling presents certain collision and handover risks, and also present a logistics challenge as cranes can become overworked. Automated guided vehicles can be used to move large parts such as wings, but the resulting sweep path becomes a major operational limitation. The customer did not like the trade-offs for either of these approaches.
2016-09-27
Technical Paper
2016-01-2109
Michael Morgan, Caroline McClory, Colm Higgins, Yan Jin, Adrian Murphy
Aerospace structures are typically joined to form larger assemblies using screw lock or swage lock fasteners or rivets. Countersunk fasteners are used widely in the aerospace industry on flying surfaces to reduce excrescence drag and increase aircraft performance. These fasteners are typically installed to a nominal countersink value which leaves them flush to the surface before being locked into position. The Northern Ireland Technology Centre (NITC) at Queen’s University Belfast has developed and demonstrated two processes which enable high tolerance flush fastening of countersunk fasteners: The ‘Flush Install’ process produces countersunk holes based on the specific geometry of each individual fastener; The ‘Fettle Flush’ process accurately machines fasteners to match the surrounding surface. Flushness values well within the allowable tolerances have been demonstrated for both Flush Install and Fettle Flush processes.
2016-09-27
Technical Paper
2016-01-2103
Eric Barton
This technical paper details an optimized Drivmatic machine design delivered to a Tier 1 aero structure supplier to automate drilling and installation of rivets, hi-loks, lockbolts & swage collars for individual fuselage panel assemblies with high throughput & strict quality requirements. While certain robot solutions continue to be explored for specific applications at many Tier 1 aero structure suppliers, robot payload capacity has limitations beyond certain criteria, which often times point towards an alternative machine design as in this case study. A typical approach for adding more automation is to allocate shop floor space based on the solution’s foot print, however contrary to most approaches this solution had to be designed to fit within a pre-determined factory footprint over a geographic location with a high water table that would not permit a foundation.
2016-09-27
Technical Paper
2016-01-2106
Dan R.W. Vaughan, Otto J. Bakker, David Branson, Svetan Ratchev
Abstract Aircraft manufacturers desire to increase production to keep up with anticipated demand. To achieve this, the aerospace industry requires a significant increase in the manufacturing and assembly performance to reach required output levels. This work therefore introduces the Variation Aware Assembly (VAA) concept and identifies its suitability for implementation into aircraft wing assembly processes. The VAA system concept focuses on achieving assemblies towards the nominal dimensions, as opposed to traditional tooling methods that aim to achieve assemblies anywhere within the tolerance band. It enables control of the variation found in Key Characteristics (KC) that will allow for an increase in the assembly quality and product performance. The concept consists of utilizing metrology data from sources both before and during the assembly process, to precisely position parts using motion controllers.
Viewing 1 to 30 of 926