Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 568
2017-09-19
Technical Paper
2017-01-2148
Ho-Sung Lee
In this paper, manufacturing of launcher structural components with superplastic forming (SPF) and solid state welding technologies is presented with several examples. Some of high strength aerospace alloys, like aluminum, titanium and superalloys, are known to have superplasticity so that complex shapes of aerospace components can be produced with this technology. A combination of superplastic forming and solid state welding processes produces lighter and stiffer components than one manufactured with conventional machining and welding. Solid state welding is an attractive method to weld materials without melting where mechanical properties are important since the welding interface is homogeneous without liquid phases.
2017-09-19
Technical Paper
2017-01-2098
Didier Friot, Loic Meiffre, Christophe Vandaele
Abstract With air traffic demand constantly increasing and several years of aircraft production in their backlog, major aircraft manufacturers are now shifting their focus toward improving assembly process efficiency. One of the most promising solutions, known as “One Side Assembly”, aims to perform the whole assembly sequence from one side of the structure (drilling, temporary fastener installation and removal, blind fastener installation, assembly control) and with a high level of integrated automation. A one-sided, or blind fastener that is capable of matching the performance of current two-sided structural fasteners while meeting volume and cost objectives can be a major driver for assembly process efficiency improvements. To achieve a blind fastener assembly capable of both fully automated and manual installations while providing robust cycle times and assembly cost reductions is full of challenges.
2017-09-19
Technical Paper
2017-01-2085
Sergey Lupuleac, Nadezhda Zaitseva, Margarita Petukhova, Julia Shinder, Sergey Berezin, Valeriia Khashba, Elodie Bonhomme
Abstract The paper is devoted to the simulation of A320 wing assembly on the base of numerical experiments carried out with the help of ASRP software. The main goal is to find fasteners’ configuration with minimal number of fastening elements that provides closing of admissible initial gaps. However, for considered junction type initial gap field is not known a priori though it should be provided as input data for computations. In order to resolve this problem the methodology of random initial gap generation based on available results of gap measurements is developed along with algorithms for optimization of fasteners' configuration on generated initial gaps. Presented paper illustrates how this methodology allows optimizing assembly process for A320 wing.
2017-09-19
Technical Paper
2017-01-2092
Ryan Mir, Russell DeVlieg
Abstract Fabrication and assembly of the majority of control surfaces for Boeing’s 777X airplane is completed at the Boeing Defense, Space and Security (BDS) site in St. Louis, Missouri. The former 777 airplane has been revamped to compete with affordability goals and contentious markets requiring cost-effective production technologies with high maturity and reliability. With tens of thousands of fasteners per shipset, the tasks of drilling, countersinking, hole inspection, and temporary fastener installation are automated. Additionally and wherever possible, blueprint fasteners are automatically installed. Initial production is supported by four (4) Electroimpact robotic systems embedded into a pulse-line production system requiring strategic processing and safeguarding solutions to manage several key layout, build and product flow constraints.
2017-09-19
Technical Paper
2017-01-2094
Tyler Everhart
Abstract Electroimpact, in collaboration with Boeing, has developed an advanced robotic assembly cell, dubbed “The Quadbots.” Using Electroimpact’s patented Accurate Robot technology and multi-function end effector (MFEE), each robot can drill, countersink, inspect hole quality, apply sealant, and insert fasteners into the part. The cell consists of 4 identical machines simultaneously working on a single section of the Boeing 787 fuselage, two on the left, and two on the right. These machines employ “collision avoidance” a new feature in their software to help them work more synchronously. The collision avoidance software uses positional feedback from external safety rated encoders mounted to the motors on the robot. From this feedback, safe spaces, in the form of virtual boundaries can be created. Such that a robot will stop and wait if the adjacent robot is in, or going to move into its programmed work envelope.
2017-09-19
Technical Paper
2017-01-2073
Rick Calawa, Gavin Smith
Abstract The decision to replace a successful automated production system at the heart of a high volume aircraft factory does not come easily. A point is reached when upgrades and retrofits are insufficient to meet increasing capacity demands and additional floor space is simply unavailable. The goals of this project were to increase production volume, reduce floor space usage, improve the build process, and smooth factory flow without disrupting today’s manufacturing. Two decades of lessons learned were leveraged along with advancements in the aircraft assembly industry, modern machine control technologies, and maturing safety standards to justify the risk and expense of a ground-up redesign. This paper will describe how an automated wing spar fastening system that has performed well for 20 years is analyzed and ultimately replaced without disturbing the high manufacturing rate of a single aisle commercial aircraft program.
2017-09-19
Technical Paper
2017-01-2082
Nirosh Jayaweera, Asitha Kulasekera, Posindu Maduranga, Thilina Kasun, Prabodh Seekkuarachchi, Janaka Sampath
Abstract Many components used in the aerospace industry are complex-shaped, without symmetric axes and parallel surfaces. Fabricating and repairing these components often require fixturing system to support manufacturing processes such as drilling, surface finishing, inspections and assembly. Currently available fixturing systems can be divided into dedicated and flexible fixtures. Among these, the flexible fixtures are suitable for rapidly changing fabricating processes and handling several complex-shaped components using same fixturing system. Background research suggested that the pin type fixturing system is the predominant design used in such applications to fix complex-shaped components. In pin type fixturing systems, force is applied to a single point of contact. This increases the pressure applied to the work piece and possibility of damaging these components. Further, conventional pins use rigid designs, which cannot adapt to the shape of the work piece.
2017-08-01
Journal Article
2017-01-9682
Mohsen Rahmani, Kamran Behdinan
Abstract Widely used in automotive industry, lightweight metallic structures are a key contributor to fuel efficiency and reduced emissions of vehicles. Lightweight structures are traditionally designed through employing the material distribution techniques sequentially. This approach often leads to non-optimal designs due to constricting the design space in each step of the design procedure. The current study presents a novel Multidisciplinary Design Optimization (MDO) framework developed to address this issue. Topology, topography, and gauge optimization techniques are employed in the development of design modules and Particle Swarm Optimization (PSO) algorithm is linked to the MDO framework to ensure efficient searching in large design spaces often encountered in automotive applications. The developed framework is then further tailored to the design of an automotive Cross-Car Beam (CCB) assembly.
2017-07-10
Technical Paper
2017-28-1965
Ganesan Selvam, Surya Prakash Vaidhyanathan, Prince Arockia Doss Sebastian, Mohamed Zaheer Abdulla, Vedantham Baskaran
Abstract Lean approaches are being implemented in various manufacturing facilities across the globe. The application of lean approaches are extended to Body proto build shop to maximize the efficiency of the shop with lesser floor space and optimized equipment. Weld fixture, Weld equipment and assembly tools are the major tools required essentially for proto BIW assembly. This paper explains how the Weld equipment planning was carried out with lean approaches and implemented effectively in proto body assembly shop. The implemented lean concepts are compared with Italy and Japanese proto body build makers to validate the frugal planning of the facility for the said intent. The implemented facility is capable of producing more than a model at a time. Weld parameter selection for weld gun, gun movement to the fixture with minimized change over time and movable weld gun gantry are the lean approaches implemented.
2017-03-28
Technical Paper
2017-01-1323
Jerry Lai, Youssef Ziada, Juhchin Yang
Abstract In the assembly of axles and wheel hubs, a nut is frequently used to fasten them as one unit. In order for the nut to hold the assembly in its final position, crimping is a widely-used method which prevents nut from loosening. A reliable crimping process not only prevents movement of the nut during axle operation but should also minimize the possibility of cracking the rim. If the nut cracks during assembly, it can start to rust and deteriorate. The service life span of the axle assembly hence shortens as a result. The quality of crimping operation is determined by the component designs, the process parameters, and the crimping tool geometry. It would be time-consuming and costly to evaluate these factors empirically; let alone the requirement of prototypes in the early stage of a new program. A dynamic finite element methodology which adopts the Arbitrary Lagrangian-Eulerian formulation from ABAQUS explicit solver is developed to simulate the complete crimping process.
2017-03-28
Technical Paper
2017-01-0326
Samuel J. Tomlinson, Martin J D Fisher, Thomas Smith, Kevin Pascal
Abstract When sealing an application with a radial O-ring system design there is a balance that must be struck between O-ring function and the ease of assembly. If design parameters are not properly controlled or considered it is possible to design an O-ring seal that would require assembly insertion forces that exceed acceptable ergonomic practices from a manufacturing standpoint. If designs are released into production with these high insertion forces manufacturing operators will struggle to assemble parts, creating opportunity for potential operator injury due to repetitive strain or CTD. In this study several variables impacting O-ring system insertion forces were tested to quantify the effects. Results were analyzed to identify design controls that could be implemented from an early design phase to optimize both functionality and ease of assembly.
2017-03-28
Journal Article
2017-01-0242
Yakov Fradkin, Michel Cordonnier, Andrew Henry, David Newton
Abstract Ford Motor Company’s assembly plants build vehicles in a certain sequence. The planned sequence for the plant’s trim and final assembly area is developed centrally and is sent to the plant several days in advance. In this work we present the study of two cases where the plant changes the planned sequence to cope with production constraints. In one case, a plant pulls ahead two-tone orders that require two passes through the paint shop. This is further complicated by presence in the body shop area of a unidirectional rotating tool that allows efficient build of a sequence “A-B-C” but heavily penalizes a sequence “C-B-A”. The plant changes the original planned sequence in the body shop area to the one that satisfies both pull-ahead and rotating tool requirements. In the other case, a plant runs on lean inventories. Material consumption is tightly controlled down to the hour to match with planned material deliveries.
2017-03-28
Journal Article
2017-01-1642
Don Price
Abstract The force required to assemble automotive electrical connectors has been tested using a range of mating speeds in a controlled lab environment. This set of tests answers questions often brought up regarding how mating speed significantly influences the required applied force. Data from these evaluations show small but consistent mate force changes with assembly speed. Sealed and unsealed connectors were found to respond differently to mating speed, which is explained using a theoretical analysis. The mechanical analysis explains what forces are involved and how they are influenced by speed. Practical recommendations are given on how mate force testing should be done to assure results are as useful as possible. Results show that that mating speed has a positive correlation to peak mate force. An opposite, negative, correlation for unsealed connectors was found.
2016-10-25
Technical Paper
2016-36-0169
Emilio C. Baraldi, Paulo Carlos Kaminski
Abstract The competition among automotive industries increases each year worldwide. Among their diverse needs, what can be highlighted are: market expansion, model diversification, competitive prices, customer-recognized quality, new products release in shorter time periods, among others. The occurrence of flaws that might compromise the health or safety of the product’s user is admittedly one of the largest issues for any manufacturer, especially if these flaws are identified after its commercialization (recall). In this work, a study on recall in the automotive industry in the Brazilian market will be presented, comprising the years of 2013 and 2014. Reasons and causes of recall are addressed, based on the sample of the aforementioned research, with special emphasis on flaws derived from the production process. The conclusion at the end of the work is that the final assembly in the automotive manufacturing process is what requires more attention from engineering area.
2016-09-27
Technical Paper
2016-01-2133
Carl Landau
Abstract Aircraft manufacturers are seeking automated systems capable of positioning large structural components with a positional accuracy of ±0.25mm. Previous attempts at using coordinated arm robots for such applications have suffered from the use of low accuracy robots and minimal systems integration. Electroimpact has designed a system that leverages our patented Accurate Robot technology to create an extensively automated and comprehensively integrated process driven by the native airplane component geometry. The predominantly auto-generated programs are executed on a single Siemens CNC that controls two Electroimpact-enhanced Kuka 6 axis robots. This paper documents the system design including the specification, applicable technologies, descriptions of system components, and the comprehensive system integration. The first use of this system will be the accurate assembly of production empennage panels for the Boeing 777X, 787 and 777 airplanes.
2016-09-27
Technical Paper
2016-01-2104
Robert Flynn, Kevin Payton-Stewart, Patrick Brewer, Ryan W. Davidge
Abstract Figure 1 Global 7000 Business Jet. Photo credit: Robert Backus. The customer’s assembly philosophy demanded a fully integrated flexible pulse line for their Final Assembly Line (FAL) to assemble their new business jets. Major challenges included devising a new material handling system, developing capable positioners and achieving accurate joins while accommodating two different aircraft variants (requiring a “flexible” system). An additional requirement was that the system be easily relocated to allow for future growth and reorganization. Crane based material handling presents certain collision and handover risks, and also present a logistics challenge as cranes can become overworked. Automated guided vehicles can be used to move large parts such as wings, but the resulting sweep path becomes a major operational limitation. The customer did not like the trade-offs for either of these approaches.
2016-09-27
Technical Paper
2016-01-2105
Thomas G. Jefferson, Richard Crossley, Anthony Smith, Svetan Ratchev
Abstract This paper presents novel development of a reconfigurable assembly cell which assembles multiple aerostructure products. Most aerostructure assembly systems are designed to produce one variant only. For multiple variants, each assembly typically has a dedicated assembly cell, despite most assemblies requiring a process of drilling and fastening to similar tolerances. Assembly systems that produce more than one variant do exist but have long changeover or involve extensive retrofitting. Quick assembly of multiple products using one assembly system offers significant cost savings from reductions in capital expenditure and lead time. Recent trends advocate Reconfigurable Assembly Systems (RAS) as a solution; designed to have exactly the functionality necessary to produce a group of similar components. A state-of-the-art review finds significant benefits in deploying RAS for a group of aerostructures variants.
2016-09-27
Technical Paper
2016-01-2093
Rainer Mueller, Matthias Vette, Ortwin Mailahn
Abstract Many assembly processes, particularly in the manufacture of aircraft components, are still carried out by humans manually. In addition to rationalization aspects, high quality requirements, non-ergonomic activities, the lack of well-qualified workers etc. may require the use of automation technology. Through novel possibilities of human-robot-cooperation these challenges can be met through a skills-based division of labor. Tasks are assigned to humans and robots in a way that the respective strengths can be used most efficiently. This article presents, how assembly processes can get empowered for human-robot-cooperation, using a specific work description for humans and robots, an assembly priority chart and suitable robot programs, to prepare for a skills-based task assignment. In the area of formerly exclusively manual assembly, the operations for the assembly of the product must first be described in detail.
2016-04-05
Technical Paper
2016-01-1130
Mike Johns, Heinz Kamping, Kristian Krueger, James Mynderse, Chris Riedel
Abstract Tapered roller bearings used to support pinion and differential gears in automotive drive axles perform best with accurate assembled preload. One of the most common high volume production assembly methods relies on bearing friction to adjust preload; however torque is an indirect measure of load, can be influenced by the raceway condition, and is difficult to control. A new method to measure preload utilizes frequency response to estimate axial preload from system stiffness. The stiffness can be measured dynamically and an assembly method automated to set preload without the need for torque or dimensional measurements. By eliminating the need for a torque signal, the raceway conditions which contribute to setting torque do not contribute to the preload setting accuracy. This study demonstrates the effectiveness of using frequency response to measure stiffness and estimate preload.
2016-04-05
Technical Paper
2016-01-1358
Jerry Lai, Youssef Ziada, Juhchin Yang
Abstract During the planetary gear assembly, staking is a widely-used method for affixing pinion shafts onto the position. A reliable staking process not only prevents the movement of shaft during transmission operation, but also minimizes the distortion of the assembly due to the staking process. The quality of staking operations is determined by the component designs, the process parameters, and the staking tool geometry. It would be extremely time-consuming and tedious to evaluate these factors empirically; not even mention the requirement of prototypes in the early stage of a new program. A Finite Element methodology is developed to simulate the complete staking process including shaft press in, staking, and after staking tool release. The critical process parameters, such as staking force, staking length, shaft and holes interference amount, etc., are then evaluated systematically.
2016-04-05
Technical Paper
2016-01-1380
S. Khodaygan, Amir Ghasemali, Hamed Afrasiab
Abstract One of the most important characteristics of industrial products, especially mechanical set-ups, is considering the tolerances of production and assembly of these set-ups, which directly influences the products’ operations. In sheet metal structures, due to the high flexibility of the sheets, the errors appeared while assembly will be as highly influential as the errors due to the production tolerance of the sheets. As a result, having a comprehensive model which could analyze the assembly process of these structures and also clarifies the relation between the tolerance of the parts and the ultimate changes of the set-up will be of considerable importance. During the assembly process, the contact effect between the components is inevitable. If such effect is not considered, the contact surfaces will permeate. The purpose of this paper is to present a method to analyze the tolerance of flexible sheet structures, considering the contact effect between surfaces.
2016-04-05
Journal Article
2016-01-1560
Bo Lin, Chinedum E. Okwudire
Abstract Ball nut assemblies (BNAs) are used in a variety of applications, e.g., automotive, aerospace and manufacturing, for converting rotary motion to linear motion (or vice versa). In these application areas, accurate characterization of the dynamics of BNAs using low-order models is very useful for performance simulation and analyses. Existing low-order contact load models of BNAs are inadequate, partly because they only consider the axial deformations of the screw and nut. This paper presents a low-order load distribution model for BNAs which considers the axial, torsional and lateral deformations of the screw and nut. The screw and nut are modeled as finite element beams, while Hertzian Contact Theory is used to model the contact condition between the balls and raceways of the screw and nut. The interactions between the forces and displacements of the screw and nut and those at the ball-raceway contact points are established using transformation matrices.
2015-09-29
Technical Paper
2015-01-2861
Burcu Guleryuz, Martin Raper, Cagkan Kocabas
Abstract Dimensional Variation Analysis (DVA) is a decision-making methodology for tolerance analysis, and is employed to evaluate assembly variations and identify problems in manufacturing assembly processes at early stages of design. In this study, the impact of component tolerances on manufacturing and assembly process variations is presented on a case study. The case study includes the alignment analysis between crankshaft and input shaft for clutch systems. The impact of component tolerances on axial alignment measurements in regard to these applications is discussed. The study shows that when combined with effective tolerance combinations, Variation Simulation Analysis (VSA) facilitates operational visibility; thus improve quality, reduce manufacturing cost, and enable reduction of production release time. The case study presents the impact of component tolerances at two levels: 1. Pre-Design, 2. Optimized Design.
2015-09-15
Journal Article
2015-01-2499
Perla Maiolino, Richard A. J. Woolley, Atanas Popov, Svetan Ratchev
Abstract The assembly and manufacture of aerospace structures, in particular legacy products, relies in many cases on the skill, or rather the craftsmanship, of a human operator. Compounded by low volume rates, the implementation of a fully automated production facility may not be cost effective. A more efficient solution may be a mixture of both manual and automated operations but herein lies an issue of human error when stepping through the build from a manual operation to an automated one. Hence the requirement for an advanced automated assembly system to contain functionality for inline structural quality checking. Machine vision, used most extensively in manufacturing, is an obvious choice, but existing solutions tend to be application specific with a closed software development architecture.
2015-09-15
Journal Article
2015-01-2494
Benjamen D. Hempstead, Scott Smith
Abstract Aircraft assembly systems which require tooling or machinery to pulse or move between multiple positions within a factory can be positioned with high repeatability without high performance foundations or sweeping out large areas of floorspace. An example shows a system of large left and right-hand frames which are positioned at 3 sequential manufacturing steps and then recirculated to the start of production via a central return aisle. The frames are 41 ton actual weight and are 72′ long, similar to a rail car. The system achieves rectangular motion for the recirculation path. The supporting and moving system incorporates low-cost rail in a floor with minimal preparation and simple to use controls. The system is also easily reconfigured if the manufacturing system needs to be altered to meet rate or flow requirements.
2015-09-15
Journal Article
2015-01-2492
Michael Assadi, Samuel Dobbs, Brian Stewart, Sean Hollowell, Joseph Elsholz
Abstract Developing the most advanced wing panel assembly line for very high production rates required an innovative and integrated solution, relying on the latest technologies in the industry. Looking back at over five decades of commercial aircraft assembly, a clear and singular vision of a fully integrated solution was defined for the new panel production line. The execution was to be focused on co-developing the automation, tooling, material handling and facilities while limiting the number of parties involved. Using the latest technologies in all these areas also required a development plan, which included pre-qualification at all stages of the system development. Planning this large scale project included goals not only for the final solution but for the development and implementation stages as well. The results: Design/build philosophy reduced project time and the number of teams involved.
2015-09-15
Journal Article
2015-01-2594
Thomas G. Jefferson, Panorios Benardos, Svetan Ratchev
Abstract Current assembly systems that deal with large, complex structures present a number of challenges with regard to improving operational performance. Specifically, aerospace assembly systems comprise a vast array of interrelated elements interacting in a myriad of ways, resulting in a deeply complex process that requires a multi-disciplined team of engineers. The current approach to ramp-up production rate involves building additional main assembly fixtures which require large investment and lead times up to 24 months. Within Airbus Operations Ltd there is a requirement to improve the capacity and flexibility of assembly systems, thereby reducing non-recurring costs and time-to-market. Recent trends to improve manufacturing agility advocate Reconfigurable Assembly Systems (RAS) as a viable solution. Yet, adding reconfigurability to assembly systems further increases both the operational and design complexity.
2015-09-15
Technical Paper
2015-01-2429
Rickard Olsen, Kerstin Johansen, Magnus Engstrom
Abstract The increased diffusion of cooperation between humans and robotics in manufacturing systems is one of the next things to implement within robotics. Since the computer power gets more and more powerful, the possibilities increase to achieve safer working environment, due to that all safety signals demands fast management of data. This could lead to a possibility to work closer and more direct with a robot, using the robot as a third hand. Within an EU FW7 funded project called LOCOMACHs (Low Cost Manufacturing and Assembly of Composite and Hybrid Structures) there are one study focusing on how to support a future higher TRL-leveled HMI cell (Human Machine Interaction) in an assembly task. The main objective in this paper is to present how different external safety systems could support the whole HMI assembly cell to work properly in an industrial context.
2015-09-15
Technical Paper
2015-01-2508
Jason Rediger, Kyle Fitzpatrick, Rob McDonald, Daniel Uebele
Abstract An improved aircraft assembly line incorporates fully automated robotic tool change. Ten machine tools, each with two onboard 6-axis robots, drill and fasten airplane structural components. The robots change 100% of the process tooling (drill bits, bolt anvils, hole probes, and nosepieces) to allow seamless transition across the entire range of hole and fastener sizes (3/16″-7/16″). To support required rate, total tool change time (including automatic calibration) is less than 80 seconds. This paper describes the robots and their end effector hardware, reliability testing, and simulations for both mechanical clearance and cycle time estimation.
2015-09-15
Technical Paper
2015-01-2510
Ryan Haldimann
Abstract Accurate measurement of countersinks in curved parts has always been a challenge. The countersink reference is defined relative to the panel surface which includes some degree of curvature. This curvature thus makes accurate measurements very difficult using both contact and 2D non-contact measurements. By utilizing structured light 3D vision technologies, the ability to very accurately measure a countersink to small tolerances can be achieved. By knowing the pose of the camera and projector, triangulation can be used to calculate the distance to thousands of points on the panel and countersink surface. The plane of the panel is then calculated using Random Sample Consensus (RANSAC) method from the dataset of points which can be adjusted to account for panel curvatures. The countersink is then found using a similar RANSAC method.
Viewing 1 to 30 of 568

Filter