Display:

Results

Viewing 1 to 30 of 1926
2017-12-01
Book
Ravi Rajamani
The environmental impact of hydrocarbon-burning aircraft is one of the main motivations for the move to electric propulsion in aerospace. Also, cars, buses, and trucks are incorporating electric or hybrid-electric propulsion systems, reducing the pressure on hydrocarbons and lowering the costs of electrical components. The economies of scale necessitated by the automotive industry will help contain costs in the aviation sector as well. The use of electric propulsion in airplanes is not a new phenomenon. However, it is only recently that it has taken off in a concrete manner with a viable commercial future. The Electric Flight Technology: Unfolding of a New Future reviews the history of this field, discusses the key underlying technologies, and describes how the future for these technologies will likely unfold, distinguishing between all-electric (AE) and hybrid-electric (HE) architectures. Written by Dr.
2017-11-15
WIP Standard
J1939DA
This document is intended to supplement the J1939 documents by offering the J1939 information in a form that can be sorted and search for easier use.
2017-11-14
WIP Standard
J3162
Document industry's agreement with CARB for the collection of monitor ratios as required by 13 CCR 1971.1 (l)(2.2.3). Describe key features of of the data collection process and identity the repository for the completed means. Document examples of the data collected for submission to CARB in compliance to (l)(2.2.3). [Note: The means was developed under a contract administered by ETI, Inc. on industry's behalf and funded by industry. The means is wholly owned by ETI, who agrees to the use of the results for this purpose. No SAE resources were used in the development of the design or the embodiment of the means. The embodiment consists of a software detailed design and Java software housed in a Github repository using the MIT software licensing model].
2017-11-13
Tech Insights
TI-0002
While all-electric aircraft remain at the bleeding edge of the aviation industry, incorporating technologies like proton exchange membrane fuel cells into existing aircraft can result in considerable auxiliary capability with low environmental impact. However, proper consideration must be given to supporting systems to achieve a reliable balance of plant-especially when those systems interface with existing aircraft architectures. The scope of the BoP is to manage and condition the reactant flows to and from the fuel-cell module and to provide power to system components.
2017-11-13
WIP Standard
AIR6514A
This interface control document (ICD) specifies all software services in the Unmanned Systems (UxS) Control Segment Architecture, including interfaces, messages, and data model.
2017-11-13
WIP Standard
AS6522A
The UCS technical governance comprises a set of policies, processes, and standard definitions to establish consistency and quality in the development of architecture artifacts and documents. It provides guidance for the use of adopted industry standards and modeling conventions in the use of Unified Modeling Language (UML) and Service Oriented Architecture Modeling Language (SoaML), including where the UCS Architecture deviates from normal UML conventions. This document identifies the defining policies, guidelines, and standards of technical governance in the following subjects: - Industry standards adopted by the AS-4UCS Technical Committee: These are the industry standards and specifications adopted by AS-4UCS in the generation and documentation of the architecture. - UCS Architecture Development: UCS specific policies on the development of the UCS Architecture. The AS-4UCS Technical Committee governance policies are intentionally minimal.
CURRENT
2017-11-09
Standard
AS6009A
This document defines a set of standard application layer interfaces called JAUS Mobility Services. JAUS Services provide the means for software entities in an unmanned system or system of unmanned systems to communicate and coordinate their activities. The Mobility Services represent the vehicle platform-independent capabilities commonly found across all domains and types of unmanned systems (referred to as UxVs). At present, over 15 services are defined in this document many of which were updated in this revision to support Unmanned Underwater Vehicles (UUVs). Some examples include:
CURRENT
2017-10-30
Standard
AS20708/7B
No Scope Available
CURRENT
2017-10-30
Standard
AS20708/25B
This specification covers the detail requirements for control transformer synchro, type 16CTB4b, 90 volt, 400 cycle.
CURRENT
2017-10-30
Standard
AS20708/16B
CURRENT
2017-10-30
Standard
AS20708/22B
CURRENT
2017-10-30
Standard
AS20708/17B
CURRENT
2017-10-30
Standard
AS20708/31B
CURRENT
2017-10-30
Standard
AS20708/39C
This specification covers the detail requirements for control transformer synchro, type 19CTB4b, 90 volt, 400 cycle.
2017-10-30
WIP Standard
J3016
This Recommended Practice provides a taxonomy for motor vehicle driving automation systems that perform part or all of the dynamic driving task (DDT) on a sustained basis and that range in level from no driving automation (level 0) to full driving automation (level 5). It provides detailed definitions for these six levels of driving automation in the context of motor vehicles (hereafter also referred to as “vehicle” or “vehicles”) and their operation on roadways. These level definitions, along with additional supporting terms and definitions provided herein, can be used to describe the full range of driving automation features equipped on motor vehicles in a functionally consistent and coherent manner.
2017-10-25
WIP Standard
AIR1213A
The scope of this report is limited to a discussion of candidate radioisotope power systems which are presently in varying stages of development, and is oriented principally towards aerospace applications.
2017-10-25
WIP Standard
AIR5709A
To present the results of a survey taken concerning future applications for high-temperature electronics and sensors.
2017-10-25
White Paper
WP-0002
The environmental impact of hydrocarbon-burning aircraft, both from the perspective of gas emissions and that of noise, is one of the main motivations for the move to electric propulsion. The added benefit from this shift to electric propulsion is that it has resulted in lowering the costs of electrical components such as motors, power electronic (PE) circuits, and batteries that are essential to this technology. This white paper seeks to explore the history, architecture, electrical components, and future trends of electric flight technology.
CURRENT
2017-10-18
Standard
J1939/84_201710
The purpose of this Recommended Practice is to verify that vehicles and/or components are capable of communicating a required set of information, in accordance with the diagnostic messages specified in SAE J1939-73, to fulfill the off-board diagnostic tool interface requirements contained in the government regulations cited below. This document describes the tests, methods, and results for verifying diagnostic communications from an off board diagnostic tool (i.e., scan tool) to a vehicle and/or component. SAE members have generated this document to serve as a guide for testing vehicles for compliance with ARB and other requirements for emissions-related on-board diagnostic (OBD) functions for heavy duty engines used in medium and heavy duty vehicles. The development of HD OBD regulations by US EPA and California’s Air Resources Board (ARB) require that diagnostic message services are exercised to evaluate diagnostic communication standardization requirements on production vehicles.
2017-10-12
WIP Standard
J2931/7
This SAE Information Report J2931/7 establishes the security requirements for digital communication between Plug-In Electric Vehicles (PEV), the Electric Vehicle Supply Equipment (EVSE) and the utility, ESI, Advanced Metering Infrastructure (AMI) and/or Home Area Network (HAN).
CURRENT
2017-10-11
Standard
AS6089
This document was prepared by the SAE AS-1A2 Committee to establish techniques for validating the Network Controller (NC) complies with the NC requirements specified in AS5653, Revision B. Note that this verification document only verifies the specific requirements from AS5653 and does not verify all of the requirements invoked by documents that are referenced by AS5653. The procuring authority may require further testing to verify the requirements not explicitly defined in AS5653 and in this verification document.
CURRENT
2017-10-10
Standard
J1939DA_201710
This document is intended to supplement the J1939 documents by offering the J1939 information in a form that can be sorted and search for easier use.
CURRENT
2017-10-02
Standard
J2931/7_201710
This SAE Information Report J2931/7 establishes the security requirements for digital communication between Plug-In Electric Vehicles (PEV), the Electric Vehicle Supply Equipment (EVSE) and the utility, ESI, Advanced Metering Infrastructure (AMI) and/or Home Area Network (HAN).
2017-09-28
Magazine
Using Thermal Simulation to Model the Effects of Wind on the Mars Curiosity Rover Quality and Validation of Digital Designs for Aerospace and Defense Scaling LiDAR Optical Payloads from Drones to Miniature UAVs Using Sintered Fiber Metal Composites for Aircraft Acoustic Attenuation GaN Breaks Barriers RF Power Amplifiers Go Wide and High Test System Ensures Flawless Performance of Military RF Devices The Impact of Video Compression on Remote Cardiac Pulse Measurement Using Imaging Photoplethysmography Remote physiological measurement technique leverages digital cameras to recover the blood volume pulse from the human body. Sensitivity Simulation of Compressed Sensing Based Electronic Warfare Receiver Using Orthogonal Matching Pursuit Algorithm Calculate the sensitivity of a CS based EW receiver using two modulation schemes.
2017-09-28
Magazine
Advances for off-highway engine design As manufacturers continue to drive out cost and meet a worldwide patchwork of regulatory frameworks, the tools for developing those engines are advancing. From showcase prototypes to advanced analytical techniques, suppliers are helping the cause. Military vehicles battle for autonomy at lower cost Engineers are adding sensors, more powerful micros and faster networks as they automate tasks and pave the way to autonomy. Heavy duty lightweighting Optimization of tractor-trailer systems and component design helps to reduce overall vehicle mass, a key strategy in improving fuel economy and meeting upcoming Phase 2 GHG regulations. Navistar's SuperTruck II explores composites, WiFi to cut weight Methane state of mind New Holland ramps up its focus on alternative fuels, showcasing a methane-powered concept tractor that trims emissions, operating costs.
2017-09-23
Technical Paper
2017-01-2007
Fang Li, Lifang Wang, Yan Wu
Abstract With the rapid development of vehicle intelligent and networking technology, the IT security of automotive systems becomes an important area of research. In addition to the basic vehicle control, intelligent advanced driver assistance systems, infotainment systems will all exchange data with in-vehicle network. Unfortunately, current communication network protocols, including Controller Area Network (CAN), FlexRay, MOST, and LIN have no security services, such as authentication or encryption, etc. Therefore, the vehicle are unprotected against malicious attacks. Since CAN bus is actually the most widely used field bus for in-vehicle communications in current automobiles, the security aspects of CAN bus is focused on. Based on the analysis of the current research status of CAN bus network security, this paper summarizes the CAN bus potential security vulnerabilities and the attack means.
2017-09-20
WIP Standard
AS6062A
This document defines a set of standard application layer interfaces called JAUS Mission Spooling Services. JAUS Services provide the means for software entities in an unmanned system or system of unmanned systems to communicate and coordinate their activities. The Mission Spooling Services represent the platform-independent capabilities commonly found across all domains and types of unmanned systems. At present, 1 service is defined in this document (more services are planned for future versions of this document): • Mission Spooler: Stores mission plans, coordinates mission plans, and parcels out elements of the mission plan for execution The Mission Spooler service is described by a JAUS Service Definition (JSD) which specifies the message set and protocol required for compliance. The JSD is fully compliant with the JAUS Service Interface Definition Language [JSIDL].
Viewing 1 to 30 of 1926

Filter