Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 1087
2017-03-28
Technical Paper
2017-01-1695
Kuang-I Shu
Abstract Much like how mobile phones ceased to be only person-to-person communications devices and became technical platforms, in-vehicle electronic devices will too cease to be solely information devices and become technical platforms incorporating all-encompassing features, including but not limited to ADAS, navigation, communication, and entertainment. This fundamental shift however will require a transformation and redesign of the vehicle’s technical architecture. Today, a vehicle’s ADAS, communications, and entertainment features exist isolated in separate devices and systems and are purpose built, leading to duplicative functions, increased costs, and difficult control, management, maintenance, and upgrade of the system. This presentation will illustrate a central control system architecture built around an IoV Gateway, an open hardware platform that integrates ICT devices for future vehicles.
2017-03-28
Journal Article
2017-01-1689
Peter Subke, Muzafar Moshref, Andreas Vach, Markus Steffelbauer
Abstract (Summary) Remote diagnostic systems support diagnostic communication by having the capability of sending diagnostic request services to a vehicle and receiving diagnostic response services from a vehicle. These diagnostic services are specified in diagnostic protocols, such as SAE J1979, SAE J1939 or ISO 14229 (UDS). For the purpose of diagnostic communication, the tester needs access to the electronic control units as communication partners. Physically, the diagnostic tester gets access to the entire vehicle´s E/E system, which consists of connectors, wiring, the in-vehicle network (e.g. CAN), the electronic control units, sensors, and actuators. Any connection of external test equipment and the E/E system of a vehicle poses a security vulnerability. The combination can be used for malicious intrusion and manipulation.
2017-03-28
Technical Paper
2017-01-1658
Qingwu Zou, Wai Keung Chan, Kok Cheng Gui, Qi Chen, Klaus Scheibert, Laurent Heidt, Eric Seow
Abstract Cyber security is becoming increasingly critical in the car industry. Not only the entry points to the external world in the car need to be protected against potential attack, but also the on-board communication in the car require to be protected against attackers who may try to send unauthorized CAN messages. However, the current CAN network was not designed with security in mind. As a result, the extra measures have to be taken to address the key security properties of the secure CAN communication, including data integrity, authenticity, confidentiality and freshness. While integrity and authenticity can be achieved by using a relatively straightforward algorithms such as CMAC (Cipher-based Message Authentication Code) and Confidentiality can be handled by a symmetric encryption algorithm like AES128 (128-bit Advanced Encryption Standard), it has been recognized to be more challenging to achieve the freshness of CAN message.
2017-03-28
Technical Paper
2017-01-1657
Jesse Edwards, Ameer Kashani
Abstract In the past few years, automotive electronic control units (ECUs) have been the focus of many studies regarding the ability to affect the deterministic operation of safety critical cyber-physical systems. Researchers have been able to successfully demonstrate flaws in security design that have considerable, dramatic impacts on the functional safety of a target vehicle. With the rapid increase in data connectivity within a modern automobile, the attack surface has been greatly broadened to allow adversaries remote access to vehicle control system software and networks. This has serious implications, as a vast number of vulnerability disclosures released by security researchers point directly to common programming bugs and software quality issues as the root cause of successful exploits which can compromise the vehicle as a whole. In this paper, we aim to bring to light the most prominent categories of bugs found during the software development life cycle of an automotive ECU.
2017-03-28
Technical Paper
2017-01-1660
Huaxin Li, Di Ma, Brahim Medjahed, Qianyi Wang, Yu Seung Kim, Pramita Mitra
Abstract Nowadays, the automotive industry is experiencing the advent of unprecedented applications with connected devices, such as identifying safe users for insurance companies or assessing vehicle health. To enable such applications, driving behavior data are collected from vehicles and provided to third parties (e.g., insurance firms, car sharing businesses, healthcare providers). In the new wave of IoT (Internet of Things), driving statistics and users’ data generated from wearable devices can be exploited to better assess driving behaviors and construct driver models. We propose a framework for securely collecting data from multiple sources (e.g., vehicles and brought-in devices) and integrating them in the cloud to enable next-generation services with guaranteed user privacy protection.
2017-03-28
Technical Paper
2017-01-1659
Mert D. Pesé, Karsten Schmidt, Harald Zweck
Abstract The automotive industry experiences a major change as vehicles are gradually becoming a part of the Internet. Security concepts based on the closed-world assumption cannot be deployed anymore due to a constantly changing adversary model. Automotive Ethernet as future in-vehicle network and a new E/E Architecture have different security requirements than Ethernet known from traditional IT and legacy systems. In order to achieve a high level of security, a new multi-layer approach in the vehicle which responds to special automotive requirements has to be introduced. One essential layer of this holistic security concept is to restrict non-authorized access by the deployment of embedded firewalls. This paper addresses the introduction of automotive firewalls into the next-generation domain architecture with a focus on partitioning of its features in hardware and software.
2017-03-28
Technical Paper
2017-01-0065
Bülent Sari, Hans-Christian Reuss
Abstract Safety is becoming more and more important with the ever increasing level of safety related E/E Systems built into the cars. Increasing functionality of vehicle systems through electrification of power train and autonomous driving leads to complexity in designing system, hardware, software and safety architecture. The application of multicore processors in the automotive industry is becoming necessary because of the needs for more processing power, more memory and higher safety requirements. Therefore it is necessary to investigate the safety solutions particularly for Automotive Safety Integrity Level (ASIL-D) Systems. This brings additional challenges because of additional requirements of ISO 26262 for ASIL-D safety concepts. This paper presents an approach for model-based “dependent failure analysis” which is required from ISO 26262 for ASIL-D safety concepts with decomposition approach.
2017-03-28
Technical Paper
2017-01-0068
Pablo Sauras-Perez, Andrea Gil, Jasprit Singh Gill, Pierluigi Pisu, Joachim Taiber
Abstract In the next 20 years fully autonomous vehicles are expected to be in the market. The advance on their development is creating paradigm shifts on different automotive related research areas. Vehicle interiors design and human vehicle interaction are evolving to enable interaction flexibility inside the cars. However, most of today’s vehicle manufacturers’ autonomous car concepts maintain the steering wheel as a control element. While this approach allows the driver to take over the vehicle route if needed, it causes a constraint in the previously mentioned interaction flexibility. Other approaches, such as the one proposed by Google, enable interaction flexibility by removing the steering wheel and accelerator and brake pedals. However, this prevents the users to take control over the vehicle route if needed, not allowing them to make on-route spontaneous decisions, such as stopping at a specific point of interest.
2017-03-28
Technical Paper
2017-01-0067
Wei Han, Xinyu Zhang, Jialun Yin, Yutong Li, Deyi Li
Abstract Safety of buses is crucial because of the large proportion of the public transportation sector they constitute. To improve bus safety levels, especially to avoid driver error, which is a key factor in traffic accidents, we designed and implemented an intelligent bus called iBus. A robust system architecture is crucial to iBus. Thus, in this paper, a novel self-driving system architecture with improved robustness, such as to failure of hardware (including sensors and controllers), is proposed. Unlike other self-driving vehicles that operate either in manual driving mode or in self-driving mode, iBus offers a dual-control mode. More specifically, an online hot standby mechanism is incorporated to enhance the reliability of the control system, and a software monitor is implemented to ensure that all software modules function appropriately. The results of real-world road tests conducted to validate the feasibility of the overall system confirm that iBus is reliable and robust.
2017-03-28
Technical Paper
2017-01-0070
Longxiang Guo, Sagar Manglani, Xuehao Li, Yunyi Jia
Abstract Autonomous driving technologies can provide better safety, comfort and efficiency for future transportation systems. Most research in this area has mainly been focused on developing sensing and control approaches to achieve various autonomous driving functions. Very little of this research, however, has studied how to efficiently handle sensing exceptions. A simple exception measured by any of the sensors may lead to failures in autonomous driving functions. The autonomous vehicles are then supposed to be sent back to manufacturers for repair, which takes both time and money. This paper introduces an efficient approach to make human drivers able to online teach autonomous vehicles to drive under sensing exceptions. A human-vehicle teaching-and-learning framework for autonomous driving is proposed and the human teaching and vehicle learning processes for handling sensing exceptions in autonomous vehicles are designed in detail.
2017-03-28
Technical Paper
2017-01-0069
Venkatesh Raman, Mayur Narsude, Damodharan Padmanaban
Abstract This manuscript compares window-based data imputation approaches for data coming from connected vehicles during actual driving scenarios and obtained using on-board data acquisition devices. Three distinct window-based approaches were used for cleansing and imputing the missing values in different CAN-bus (Controller Area Network) signals. Lengths of windows used for data imputation for the three approaches were: 1) entire time-course for each vehicle ID, 2) day, and 3) trip (defined as duration between vehicle's ignition statuses ON to OFF). An algorithm for identification of ignition ON and OFF events is also presented, since this signal was not explicitly captured during the data acquisition phase. As a case study, these imputation techniques were applied to the data from a driver behavior classification experiment.
2017-03-28
Technical Paper
2017-01-0056
Naveen Mohan, Martin Törngren, Sagar Behere
Abstract With the advent of ISO 26262 there is an increased emphasis on top-down design in the automotive industry. While the standard delivers a best practice framework and a reference safety lifecycle, it lacks detailed requirements for its various constituent phases. The lack of guidance becomes especially evident for the reuse of legacy components and subsystems, the most common scenario in the cost-sensitive automotive domain, leaving vehicle architects and safety engineers to rely on experience without methodological support for their decisions. This poses particular challenges in the industry which is currently undergoing many significant changes due to new features like connectivity, servitization, electrification and automation. In this paper we focus on automated driving where multiple subsystems, both new and legacy, need to coordinate to realize a safety-critical function.
2017-03-28
Technical Paper
2017-01-0114
Jorge De-J. Lozoya Santos, J. C. Tudon-Martinez
Abstract The project consists on the mechanical and electronic instrumentation of an existing vehicle (built at Universidad de Monterrey for the SAE Supermileage Competition) to be able to control its steering, braking and throttle systems “by wire”. Insight to the stages of turning the vehicle into an autonomous one is presented. This includes identification of the current mechanical properties, choosing adequate components and the use of a simulation to allow early work on the software involving cameras and motors to provide autonomy to the vehicle. Using software in the loop methodology mathematical models of the dynamics of the vehicle are run in Simulink and update the position and orientation of the 3D model of the vehicle in V-REP, a robot simulator.
2017-03-28
Technical Paper
2017-01-0071
Vahid Taimouri, Michel Cordonnier, Kyoung Min Lee, Bryan Goodman
Abstract While operating a vehicle in either autonomous or occupant piloted mode, an array of sensors can be used to guide the vehicle including stereo cameras. The state-of-the-art distance map estimation algorithms, e.g. stereo matching, usually detect corresponding features in stereo images, and estimate disparities to compute the distance map in a scene. However, depending on the image size, content and quality, the feature extraction process can become inaccurate, unstable and slow. In contrast, we employ deep convolutional neural networks, and propose two architectures to estimate distance maps from stereo images. The first architecture is a simple and generic network that identifies which features to extract, and how to combine them in a multi-resolution framework.
2017-03-28
Technical Paper
2017-01-0072
Yang Zheng, Navid Shokouhi, Amardeep Sathyanarayana, John Hansen
Abstract With the embedded sensors – typically Inertial Measurement Units (IMU) and GPS, the smartphone could be leveraged as a low-cost sensing platform for estimating vehicle dynamics. However, the orientation and relative movement of the smartphone inside the vehicle yields the main challenge for platform deployment. This study proposes a solution of converting the smartphone-referenced IMU readings into vehicle-referenced accelerations, which allows free-positioned smartphone for the in-vehicle dynamics sensing. The approach is consisted of (i) geometry coordinate transformation techniques, (ii) neural networks regression of IMU from GPS, and (iii) adaptive filtering processes. Experiment is conducted in three driving environments which cover high occurrence of vehicle dynamic movements in lateral, longitudinal, and vertical directions. The processing effectiveness at five typical positions (three fixed and two flexible) are examined.
2017-03-28
Technical Paper
2017-01-1654
Arun Ganesan, Jayanthi Rao, Kang Shin
Abstract Modern vehicles house many advanced components; sensors and Electronic Control Units (ECUs) — now numbering in the 100s. These components provide various advanced safety, comfort and infotainment features, but they also introduce additional attack vectors for malicious entities. Attackers can compromise one or more of these sensors and flood the vehicle’s internal network with fake sensor values. Falsified sensor values can confuse the driver, and even cause the vehicle to misbehave. Redundancy can be used to address compromised sensors, but adding redundant sensors will increase the cost per vehicle and is therefore less attractive. To balance the need for security and cost-efficiency, we exploit the natural redundancy found in vehicles. Natural redundancy occurs when the same physical phenomenon causes symptoms in multiple sensors. For instance, pressing the accelerator pedal will cause the engine to pump faster and increase the speed of the vehicle.
2017-03-28
Technical Paper
2017-01-1653
Jon Barton Shields, Jörg Huser, David Gell
Abstract This paper discusses the merits, benefits and usage of autonomous key management (with implicit authentication) (AKM) solutions for securing ECU-to-ECU communication within the connected vehicle and IoT applications; particularly for transmissions between externally exposed, edge ECU sensors connected to ECUs within the connected vehicle infrastructure. Specific benefits addressed include reductions of communication latency, implementation complexity, processing power and energy consumption. Implementation issues discussed include provisioning, key rotation, synchronization, re-synchronization, digital signatures and enabling high entropy.
2017-03-28
Technical Paper
2017-01-1655
Paul Wooderson, David Ward
Abstract An essential part of an effective cybersecurity engineering process is testing the implementation of a system for vulnerabilities and validating the effectiveness of countermeasures. The SAE J3061 Cybersecurity Guidebook for Cyber-Physical Vehicle Systems provides a recommended framework which organizations can use to implement a cybersecurity engineering process, which includes activities such as integration and testing, penetration testing and verification/validation of cybersecurity requirements at the hardware, software and system levels. This presentation explores the different kinds of testing that are appropriate at each of these process steps and discusses some important differences between cybersecurity testing and more familiar forms of testing.
2017-03-28
Technical Paper
2017-01-1661
Georg Macher, Richard Messnarz, Eric Armengaud, Andreas Riel, Eugen Brenner, Christian Kreiner
Abstract The replacement of safety-critical mechanical components with electro-mechanical systems has led to the fact that safety aspects play a central role in development of embedded automotive systems. Recently, consumer demands for connectivity (e.g., infotainment, car-2-car or car-2-infrastructure communication) as well as new advances toward advanced driver assistance systems (ADAS) or even autonomous driving functions make cybersecurity another key factor to be taken into account by vehicle suppliers and manufacturers. Although these can capitalize on experiences from many other domains, they still have to face several unique challenges when gearing up for specific cybersecurity challenges. A key challenge is related to the increasing interconnection of automotive systems with networks (such as Car2X). Due to this connectivity, it is no longer acceptable to assume that safety-critical systems are immune to security risks.
2017-03-28
Journal Article
2017-01-1615
Hariharan Venkitachalam, Christian Granrath, Balachandar Gopalakrishnan, Johannes Richenhagen
Abstract Ensuring software quality is one of the key challenges associated with the development of automotive embedded systems. Software architecture plays a pivotal role in realizing functional and non-functional requirements for automotive embedded systems. Software architecture is a work-product of the early stages of software development. The design errors introduced at the early stages of development will increase cost of rework. Hence, an early evaluation of software architecture is important. PERSIST (Powertrain control architecture Enabling Reusable Software development for Intelligent System Tailoring) is a model-based software product line approach which focuses on cross-project standardization of powertrain software. The product line is characterized by common design guidelines and adherence to industry standards like ISO 25010, AUTOSAR and ISO 26262.
2017-03-28
Journal Article
2017-01-1650
Jian Yang, Christian Poellabauer, Pramita Mitra
Abstract Bluetooth Low Energy (BLE) is an energy-efficient radio communication technology that is rapidly gaining popularity for various Internet of Things (IoT) applications. While BLE was not designed specifically with vehicular communications in mind, its simple and quick connection establishment mechanisms make BLE a potential inter-vehicle communication technology, either replacing or complementing other vehicle-to-vehicle (V2V) technologies (such as the yet to be deployed DSRC). In this paper we propose a framework for V2V communication using BLE and evaluate its performance under various configurations. BLE uses two major methods for data transmission: (1) undirected advertisements and scanning (unconnected mode) and (2) using the central and peripheral modes of the Generic Attribute Profile (GATT) connection (connected mode).
2017-03-28
Journal Article
2017-01-1649
Jeffrey Yeung, Omar Makke, Perry MacNeille, Oleg Gusikhin
Abstract SmartDeviceLink (SDL) is open-source software that connects the vehicle’s infotainment system to mobile applications. SDL includes an open-source software development kit (SDK) that enables a smart-device to connect to the vehicle’s human-machine interface (HMI), read vehicle data, and control vehicle sub-systems such as the audio and climate systems. It is extensible, so other convenience subsystems or brought-in aftermarket modules can be added. Consequently, it provides a platform for cyber-physical systems that can integrate wearables, consumer sensors and cloud data into an intelligent vehicle control system. As an Open Innovation Platform, new features can be rapidly developed and deployed to the market, bypassing the longer vehicle development cycles. This facilitates a channel for rapid prototyping and innovation that is not constrained by the traditional process of automotive parts development, but is rather on the timeline of software development.
2017-03-28
Technical Paper
2017-01-1651
Douglas Thornburg, John Schmotzer, MJ Throop
Abstract Onboard, embedded cellular modems are enabling a range of new connectivity features in vehicles and rich, real-time data set transmissions from a vehicle’s internal network up to a cloud database are of particular interest. However, there is far too much information in a vehicle’s electrical state for every vehicle to upload all of its data in real-time. We are thus concerned with which data is uploaded and how that data is processed, structured, stored, and reported. Existing onboard data processing algorithms (e.g. for DTC detection) are hardcoded into critical vehicle firmware, limited in scope and cannot be reconfigured on the fly. Since many use cases for vehicle data analytics are still unknown, we require a system which is capable of efficiently processing and reporting vehicle deep data in real-time, such that data reporting can be switched on/off during normal vehicle operation, and that processing/reporting can be reconfigured remotely.
2017-03-28
Journal Article
2017-01-1621
Andre Kohn, Karsten Schmidt, Jochen Decker, Maurice Sebastian, Alexander Züpke, Andreas Herkersdorf
Abstract The increasing complexity of automotive functions which are necessary for improved driving assistance systems and automated driving require a change of common vehicle architectures. This includes new concepts for E/E architectures such as a domain-oriented vehicle network based on powerful Domain Control Units (DCUs). These highly integrated controllers consolidate several applications on different safety levels on the same ECU. Hence, the functions depend on a strictly separated and isolated implementation to guarantee a correct behavior. This requires middleware layers which guarantee task isolation and Quality of Service (QoS) communication have to provide several new features, depending on the domain the corresponding control unit is used for. In a first step we identify requirements for a middleware in automotive DCUs. Our goal is to reuse legacy AUTOSAR based code in a multicore domain controller.
2017-03-28
Technical Paper
2017-01-1617
Sherif Aly
Abstract The evolution in automotive qualified electronic components, including the birth of powerful multicore System-on-Chip (SoC) platforms has fundamentally changed the approach to designing automotive electronic systems today. This evolution is not only happening on the hardware side, but also on the software design side where there has been consolidation of multiple domains onto a single SoC. This type of consolidation allows shorter time-to-market with consumer-ready features to address immediate market demands. This paper explores the reasons for this trend and available architectures for achieving consolidation. AUTOSAR on Linux is one of those architectures and has been popular in Advanced Driver Assistance Systems (ADAS) and infotainment applications, allowing complex functions to smoothly integrate into the vehicle network.
2017-03-28
Journal Article
2017-01-0896
Philip Griefnow, Jakob Andert, Dejan Jolovic
Abstract The range of tasks in automotive electrical system development has clearly grown and now includes goals such as achieving efficiency requirements and complying with continuously reducing CO2 limits. Improvements in the vehicle electrical system, hereinafter referred to as the power net, are mandatory to face the challenges of increasing electrical energy consumption, new comfort and assistance functions, and further electrification. Novel power net topologies with dual batteries and dual voltages promise a significant increase in efficiency with moderate technological and financial effort. Depending on the vehicle segment, either an extension of established 12 V micro-hybrid technologies or 48 V mild hybridization is possible. Both technologies have the potential to reduce fuel consumption by implementing advanced stop/start and sailing functionalities.
2017-03-28
Technical Paper
2017-01-1209
Zhichao Luo, Xuezhe Wei
Abstract Nowadays, wireless power transfer (WPT) gradually prevails and many researchers have devoted themselves to it because it is a safe, convenient and reliable way for recharging electric vehicles comparing to the conventional plug-in contact-based methods. Square coils are commonly used in WPT systems. However, there is few theoretical analysis of self- and mutual inductance of square coils between two magnetic shielding materials. In this paper, in order to study the spatial magnetic field distribution, the analytical model of n-turn square planar spiral coils between two semi-infinite multilayer media is developed based on the Maxwell equations and the Dual Fourier transformation. And then, by means of surface integrals, the self- and mutual inductance can be carried out, with respect to the main parameters of the WPT systems such as the operating frequency, the geometry feature of the coupling coils and the properties of the multilayer media.
2017-03-28
Technical Paper
2017-01-1228
Masaya Nakanishi
Abstract Alternator, which supplies electric energy to a battery and electrical loads when it is rotated by engine via belt, is one of key components to improve vehicle fuel efficiency. We have reduced rectification loss from AC to DC with a MOSFET instead of a rectifier diode. It is important to turn on the MOSFET and off during a rectification period, called synchronous control, to avoid a current flow in the reverse direction from the battery. We turn it off so as to remain a certain conduction period through a body diode of the MOSFET before the rectification end. It is controlled by making a feedback process to coincide with an internal target conduction period based on the rotational speed of the alternator. We reduced a voltage surge risk at turn-off by changing the feedback gain depending on the sign of the time difference between the measured period and the target.
2017-03-28
Technical Paper
2017-01-1233
Mohamed A. Elshaer, Allan Gale, Chingchi Chen
Abstract Vehicle safety is of paramount importance when it comes to plugging the vehicle into the electric utility grid. The impact of high voltage ground fault has been neglected or, if not, addressed by guidelines extracted from general practices, written in international standards. The agile accretion in Electric Vehicle (EV) development deems an exhaustive study on safety risks pertaining to fault occurrence. While vehicle electrification offers a vital solution to oil scarcity, it is essential that the fast development of the number of electric vehicles on the road does not compromise safety. Meanwhile, the link between technology and demands of society must be governed by vehicle safety. In this paper, a comprehensive study on high voltage (HV) fault conditions occurring in an EV will be conducted. In the next decade, EVs are expected to be prevalent worldwide. Ground fault characteristics are significantly dependent on the earthing system.
2017-03-28
Journal Article
2017-01-1243
Yan Zhou, Lihua Chen, Shuitao Yang, Fan Xu, Mohammed Khorshed Alam
Abstract The IGBTs are dominantly used in traction inverters for automotive applications. Because the Si-based device technology is being pushed to its theoretical performance limit in such applications during recent years, the gate driver design is playing a more prominent role to further improve the traction inverter loss performance. The conventional gate driver design in traction inverter application needs to consider worst case scenarios which adversely limit the semiconductor devices' switching speed in its most frequent operation regions. Specifically, when selecting the gate resistors, the IGBT peak surge voltage induced by fast di/dt and stray inductance must be limited below the device rated voltage rating under any conditions. The worst cases considered include both highest dc bus voltage and maximum load current. However, the traction inverter operates mainly in low current regions and at bus voltage much lower than the worst case voltage.
Viewing 1 to 30 of 1087

Filter