Criteria

Text:
Content:
Display:

Results

Viewing 1 to 30 of 114
2017-01-24
WIP Standard
AIR7999
This SAE Aerospace Information Report (AIR) presents metrics for assessing the performance of diagnostic and prognostic algorithms applied to Engine Health Management (EHM) functions. This document consolidates and expands upon the metric information previously contained in AIR4985 and AIR5909. The emphasis is entirely on metrics and as such is intended to provide an extension and complement to such documents as ARP4176, which provides insight into how to create a cost benefit analysis to determine the justification for implementing an EHM system.
CURRENT
2017-01-05
Standard
AIR5661A
This SAE Aerospace Information Report (AIR) provides data and general analysis methods for calculation of internal and external, pressurized and unpressurized airplane compartment pressures during rapid discharge of cabin pressure. References to the applicable current FAA and EASA rules and advisory material are provided. While rules and interpretations can be expected to evolve, numerous airplanes have been approved under current and past rules that will have a continuing need for analysis of production and field modifications, alterations and repairs. The data and basic principles provided by this report are adaptable to any compartment decompression analysis requirement.
2016-12-21
WIP Standard
ARP6915
This Aerospace Recommended Practice (ARP) offers best practice regarding the implementation of IVHM systems taking into account Human Factors, both the vehicle crew and the maintenance staff. The document will include considerations regarding both military and civil fixed wing aircraft. Safety implications will also be addressed.
CURRENT
2016-12-01
Standard
ARP1821B
This SAE Aerospace Recommended Practice (ARP) includes recommended ground flotation analysis methods for both paved and unpaved airfields with application to both commercial and military aircraft.
CURRENT
2016-11-29
Standard
AIR1873A
This Aerospace Information Report (AIR) describes a Limited Engine Monitoring System that can be used by the flight crew or the maintenance staff, or both, to monitor the health of gas turbine engines in aircraft. This AIR considers monitoring of gas path performance and mechanical parameters, and systems such as low cycle fatigue counters and engine history recorders. It also considers typical measurement system accuracies and their impact. This AIR is intended as a technical guide. It is not intended to be used as a legal document or standard. AIR 1873 supplements ARP 1587, Aircraft Gas Turbine Engine Monitoring System Guide.
CURRENT
2016-11-12
Standard
AIR4175B
An effective GSS is vital to the successful implementation of an EMS and is a fundamental part of the total monitoring system design, including asset management. Unlike the on-board part of the EMS which principally uses real time data to indicate when engine maintenance is required, a GSS can offer much greater processing power to comprehensively analyze and manipulate EMS data for both maintenance and logistics purposes. This document reviews the main EMS functions and discusses the operating requirements used to determine the basis design of a GSS, including the interfaces with other maintenance or logistic systems. A brief discussion is also included on some of the more recent advances in GSS technology that have been specifically developed to provide more effective diagnostic capabilities for gas turbine engines.
CURRENT
2016-11-08
Standard
ARP9136
The objective of any organization, as part of continual improvement, is to reduce the number of issues (i.e., undesirable conditions, defects, failures) and to minimize their impact on quality, delivery performance, and cost. This includes having processes in place to detect and eradicate significant and recurrent issues, which implies having well identified problems, a common understanding of their impact and associated root causes, and having defined and implemented adequate actions so that these problems, including similar issues will not happen again.
2016-09-03
WIP Standard
J1390
Three levels of fan structural analysis are included in this practice: 1. Initial Structural Integrity 2. In-vehicle Testing 3. Durability Test Methods The Initial Structural Integrity section describes analytical and test methods used to predict potential resonance and, therefore, possible fatigue accumulation. The In-vehicle (or machine) section enumerates the general procedure used to conduct a fan strain gage test. Various considerations that may affect the outcome of strain gage data have been described for the user of this procedure to adapt/discard depending on the particular application. The Durability Test Methods section describes the detailed test procedures that may be used depending on type of fan, equipment availability, and end objective. Each of the previous levels builds upon information derived from the previous level. Engineering judgment is required as to the applicability of each level to a different vehicle environment or a new fan design.
CURRENT
2016-08-04
Standard
J2869_201608
This report details continuing work examining the fatigue life durability of a US Army Trailer. This report describes, through example, a process to evaluate and reduce the experimental data needed for a Mechanical Systems Physics - of Failure analysis. In addition the report describes the process used to validate the computer simulation models.
CURRENT
2016-06-28
Standard
J2830_201606
This recommended practice describes a process for testing the comprehension of static (i.e., fixed or non-dynamic) symbols for all ground vehicles, for both OEM and aftermarket products. With advancing display technology, it is now possible to display dynamic symbols (e.g., a spinning beach ball to show that a process is ongoing, or a diagram showing energy distribution in hybrid vehicles). Such graphics are outside of the scope of this recommended practice, though extensions of this process may be useful for testing them. However, several symbols which occupy the same space on a display may change state without movement (e.g. play/pause button); these are within the scope of this recommended practice. The process described in this recommended practice includes criteria that are used to identify how well the perceived meaning matches the intended meaning for a representative sample of drivers.
CURRENT
2016-06-17
Standard
RB9
This Reliability Bulletin is provided as a guide for engineering and managment personnel concerned with Failure Mode and Effect Analyses (FMEA). In Addition, it provides information concerning technical and functional relationship of Failure Mode and Effect Analyses to associated disciplines, as for example, Maintainability, Safety, and System Effectiveness Analyses. This Bulletin covers requirements, concepts, interface, procedures and reports of FMEA. This Bulletin should contribute to greater utilization of FMEA results and to the understanding and appreciation of the purpose of FMEA on the part of engineering and management personnel.
CURRENT
2016-06-17
Standard
RB4A
A guide for the use by companies contracting for design of electronic products with the Department of Defense (DOD) and other government agencies. This Bulletin present concepts and techniques for quantifying electronic equipment reliability. The techniques are responsive to the requirements of various branches of the Department of Defense and are also useful with regard to other Government agencies (e.g., NASA).
CURRENT
2016-06-16
Standard
EQB4
This report on quantification of Essentiality (W) and Utilization (U) terms extends the scope of the basic expression for system effectiveness (Es = ADC) to include the additional "W" and "U" paramenters needed for the quantification of multi-functioned and multi-missioned systems. Methods and procedures for applying these terms to system effectiveness quantification are discussed and simple examples to demonstrate the principles of usage are included. The need to look at the system being quantified in terms of its level in the mission/function hierarchical tree is explained. The relationships between system elements (hardware, software, and personnel) and performance functions are discussed and illustrated with examples. Two methods for applying the "W"'and "U" weight factors, LOGIC AND (weak link model) and LOGIC OR (degraded operational modes model) are described and examples are shown for these cases.
CURRENT
2016-06-16
Standard
EQB2
Program Managers have considered the subject of effectiveness quantification from three diverse points of view. The first viewpoint, in conjunction with the system effectiveness analyst, is to quantify everything and to consider everything quantifiable into a figure of merit. The result is a numerical decision aid that usually has some undesirable attributes such as oversimplification, non-sensitivity to critical parameters, hidden calculations, and difficulty in exercise of the model. This technique is characterized by mathematical models, computer programs, and attempted optimizations. The second viewpoint, in conjunction with the controller, is to consider the effectiveness as specified and concentrate on cost reduction, This has a danger of formulating all technical problems in terms of cost or economic considerations. This technique is characterized by closely controlled work packages.
CURRENT
2016-06-16
Standard
EQB3
The Electronic Industries Association (EIA) G-47 Effectiveness QuantificationCommittee has a basic task to quantify system effectiveness. Since the support parameters underly any prime parameter quantification, the topic of support system analysis is a fundamental one to this basic committee task. The charts contained in this bulletin were developed and used for presentations to aircraft support engineering groups, to comunicate the logic and scope of system analysis applied to support system optimization.
CURRENT
2016-05-31
Standard
CRB1
Expert systems are a wave of the information processing future. As time goes on they will become more and more part of the mainstream. However, a necessary prerequisite to moving them into widespread use is to reduce the methodologies for expert system development closer to the more generally accepted software engineering techniques. This report offers a step towards that goal. It describes an alternative software life cycle model for expert system development. Since the field of Artificial Intelligence is so broad, this report limits the software to be considered. Systems that would be of the greatest interest to DoD over the next 5 to 7 years would be expert systems that have the following attributes: - may reason with uncertainty - are not necessarily rule-based - are non-learning systems. For these systems, a developmental cycle is articulated, and each phase of the cycle described.
CURRENT
2016-05-31
Standard
CRB2
This paper originated with a software quality panel workshop at the EIA Computer Resources Workshop. The panel group initially focused on requirements for nondeliverable software. It was felt that the requirements for deliverable software were well covered by Department of Defense standards but non-deliverable software issues were not adequately covered. After much discussion, including attempts to define nondeliverable by examples of software types, a surprising unanimous conclusion was reached by the participants. That is: the states of "deliverable" and "non-deliverable" had no bearing on the quality of the software, and thereby also had no bearing on the quality assurance requirements that should be applied for that software. Rather, the only rational application of quality assurance was primarily dependent on the impact that the software had, or could have, on the end product (¡.e. the ultimate mission).
CURRENT
2016-05-24
Standard
AIR4762A
This Aerospace Information Report (AIR) describes conditions under which freezing (frozen) brakes can occur and describes operating procedures which have been used to prevent or lessen the severity or probability of brake freezing. This document also identifies design features that some manufacturers implement to minimize the occurrence of freezing brakes. This document is not an Aerospace Recommended Practice (ARP) and therefore does not make recommendations based on a consensus of the industry. However, part of this document’s purpose is to describe the design and operational practices that some are using to minimize the risk of frozen brakes. NOTE: The following information is based upon experience gained across a wide-range of aircraft types and operational profiles, and should NOT take precedence over Aircraft Flight Manual or Flight Operations Procedures.
2016-05-17
WIP Standard
JA6268
This Aerospace Recommended Practice (ARP) was created to help industry deal with existing barriers to the successful implementation of Integrated Vehicle Health Management (IVHM) technology in the aerospace and automotive sectors. That is,given the common barriers that exist, this ARP can be applied not only to aerospace but also to the automotive, commercial and military vehicle sectors. Original Equipment Manufacturers (OEMs) in all of these sectors are heavily dependant upon a large number of component suppliers in order to design and build their products. The advent of IVHM technology has accentuated the need for improved coordination and communication between the OEM and its suppliers –to ensure that suppliers design health ready capabilities into their particular components.
2016-05-17
WIP Standard
AIR6245
This document is applicable to military aircraft where stakeholders are seeking guidance on the development and approval of Structural Health Monitoring (SHM) technologies and on the integration of these technologies into encompassing maintenance and operational support systems. The document will refer to those guidelines prepared under SAE ARP6461 that are relevant and applicable to military applications.
2016-04-22
WIP Standard
ARP6904
In order to realize the benefits of Integrated Vehicle Health Management (IVHM) within the aerospace and defense industry there is a need to address five critical elements of data interoperability within and across the aircraft maintenance ecosystem, namely • Approach • Trust • Context • Value • Security In Integrated Vehicle Health Management (IVHM) data interoperability is the ability of different authorized components, systems, IT, software, applications and organizations to securely communicate, exchange data, interpret data, use the information and derive consistent insight from the data that has been exchanged to derive value.
CURRENT
2016-03-16
Standard
AIR5656A
This SAE Aerospace Information Report (AIR) provides a methodology for performing a statistical assessment of gas-turbine-engine stability-margin usage. Consideration is given to vehicle usage, fleet size, and environment to provide insight into the probability of encountering an in-service engine stall event. Current industry practices, such as ARP1420, supplemented by AIR1419, and engine thermodynamic models, are used to determine and quantify the contribution of individual stability threats. The statistical technique adopted by the S-16 committee for performing a statistical stability assessment is the Monte Carlo method (see Applicable References 1 and 2). While other techniques may be suitable, their application is beyond the scope of this document. The intent of the document is to present a methodology and process to construct a statistical-stability-assessment model for use on a specific system and its mission or application.
2016-01-03
WIP Standard
AIR6900
This AIR will address the need for a strategy to achieve aircraft operating certificate holder maintenance efficiencies within the existing regulatory environment as well as the need for regulation, policy, and guidance changes in the long-term to accommodate more complex IVHM solutions. This document will analyse which IVHM solutions can be incorporated within existing maintenance procedures and which also comply with regulations, policy, and guidance. One of the AIR’s objectives is to define best practices for aircraft operating certificate holders to engage with regulators to get approval for simpler IVHM applications leading to maintenance efficiencies. Additionally, this document will analyse the barriers that existing regulations, policy, and guidance present to the implementation of more advanced IVHM solutions. The result is a set of recommendations to certify and implement end-to-end IVHM solutions for the purpose of gaining maintenance efficiencies.
2015-10-21
WIP Standard
TAHB0007_1A
This document describes a set of standardized reports that can be generated using the logistics product data elements contained in GEIA-STD-0007-B. Each report is defined by selection options, processing, format, report sequence, and data sources. The selection options paragraph identifies recommended mandatory and optional selections that can be made by the user to tailor the report content. The processing paragraph identifies qualifying criteria for report data, report calculations, and specific instructions regarding how the data should be presented on the report. Each report has a sample report showing its format. Report sequences specify the sort criteria for a given report, and each Part/Section within a report. There is an attached listing of data sources for the elements that are on a report. The listing provides the report header for each element; and its GEIA-STD-0007-B data element/attribute along with the appropriate entity.
2015-10-21
WIP Standard
GEIAHB0007C
This handbook is intended to provide additional information on the use and tailoring of the data in GEIA-STD-0007. The standard provides a new approach to Logistics Support Analysis Record (LSAR) (i.e., MIL-STD-1388-2B) data with emphasis on data transfer (e.g., XML Schemas) versus data storage (e.g., relational tables). GEIA-STD-0007 identifies the range of logistics product data that is generated during the development and acquisition of a system or end item. It does not prescribe the supportability analyses required to generate logistics product data. How the data is generated via analysis techniques/tools, how it is stored and processed, and how the data is used to generate specific logistics support products, is left to the performing activity. GEIA-STD-0007 is a data transfer standard implementing the logistics data concepts of GEIA-STD-927, Common Data Schema for Complex Systems.
2015-10-21
WIP Standard
GEIASTD0007C
This standard defines logistics product data generated during the requirements definition and design of an industry or government system, end item or product. It makes use of the Extensible Markup Language (XML) through the use of entities and attributes that comprise logistics product data and their definitions. The standard is designed to provide users with a standard set of data tags for all or portions of logistics product data and customer defined sub-sets of logistics product data. The standard can be applied to any indsutry or government product, system or equipment acquisition program, major modification program, and applicable research and development projects. This standard is for use by both industry and government activities. As used in this standard, the requiring authority is generally the customer and the customer can be a government or industry activity. The performing activity may be either a industry or government activity.
CURRENT
2015-09-17
Standard
J1526_201509
This document describes a fuel-consumption test procedure that utilizes industry accepted data collection and statistical analysis methods to determine the difference in fuel consumption between vehicles with a gross vehicle weight of more than 10,000 pounds. This test procedure can be used for an evaluation of two or more different vehicles but is not to be used to evaluate a component change. Although on-road testing is allowed, track testing is the preferred method because it has the greatest opportunity to minimize weather and traffic influences on the variability of the results. All tests shall be conducted in accordance with the weather constraints described within this procedure and shall be supported by collected data and analysis. This document provides information that may be used in concert with SAE Recommended Practices J1264, J1252, J1321, and J2966 as well as additional current and future aerodynamic and vehicle performance SAE standards.
CURRENT
2015-08-24
Standard
MAP749C
This SAE Aerospace Recommended Practice describes a method for conducting room temperature, contaminated fuel, endurance testing when the applicable specification requires nonrecirculation of the contaminants. The objective of the test is to determine the resistance of engine fuel system components to wear or damage caused by contaminated fuel operation. It is not intended as a test for verification of the component's filter performance and service life. ARP1827 is recommended for filter performance evaluation.
CURRENT
2015-06-30
Standard
J2944_201506
This Recommended Practice, Operational Definitions of Driving Performance Measures and Statistics, provides functional definitions of and guidance for performance measures and statistics concerned with driving on roadways. As a consequence, measurements and statistics will be calculated and reported in a consistent manner in SAE and ISO standards, journal articles proceedings papers, technical reports, and presentations so that the procedures and results can be more readily compared. Only measures and statistics pertaining to driver/vehicle responses that affect the lateral and longitudinal positioning of a road vehicle are currently provided in this document. Measures and statistics covering other aspects of driving performance may be included in future editions. For eye glance-related measures and statistics, see SAE J2396 (Society of Automotive Engineers, 2007) and ISO 15007-1 (International Standards Organization, 2002).
2015-04-28
WIP Standard
AIR6892
This SAE Aerospace Information Report (AIR) is applicable to rotorcraft structural health monitoring (SHM) applications, both commercial and military, where end users are seeking guidance on the definition, development, integration, qualification, and certification of SHM technologies to achieve enhanced safety and reduced maintenance burden based on the lessons learned from existing Health and Usage Monitoring Systems (HUMS). While guidance on SHM business case analysis would be useful to the community, such guidance is beyond the scope of this AIR. For the purpose of this document, SHM is defined as “the process of acquiring and analyzing data from on-board sensors to evaluate the health of a structure.” The suite of on-board sensors could include any presently installed aircraft sensors as well as new sensors to be defined in the future. Interrogation of the sensors could be done onboard during flight or using ground support equipment.
Viewing 1 to 30 of 114