Criteria

Text:
Display:

Results

Viewing 1 to 30 of 8144
2017-10-13
Technical Paper
2017-01-5018
Subhash Hanmant Bhosale, Manohar Goud Kalal, Ashish Kumar Sahu
Abstract In today’s cost-competitive automotive market, use of finite element simulations and optimization tools has become crucial to deliver durable and reliable products. Simulation driven design is the key to reduce number of physical prototypes, design iterations, cost and time to market. However, simulation driven design optimization tools have struggled to find global acceptance and are typically underutilized in many applications; especially in situations where the algorithms have to compete with existing know-how decision making processes. In this study, systematic multi-phase approach for optimization driven design is presented. Approach includes three optimization phases. In first phase, topology optimization is performed on concept BIW design volume to identify critical load paths. Architectural inputs from topology are used to design base CAD.
2017-10-08
Technical Paper
2017-01-2359
Yaodong Hu, Fuyuan Yang, Minggao Ouyang
Abstract Energy saving is becoming one of the most important issues for the next generation of commercial vehicles. The fuel consumption limits for commercial vehicles in China have stepped into the third stage, which is a great challenge for heavy duty commercial vehicles. Hybrid technology provides a promising method to solve this problem, of which the dual motor coaxial series parallel configuration is one of the best options. Compared with parallel configuration, the powertrain can not only operate in pure electric or parallel mode, but also can operate in series mode, which shows better flexibility. In this paper, regulations on test cycle, fuel consumption limits and calculation method of the third stage will be introduced in detail. Then, the quasi-static models of the coaxial series parallel powertrain with/without gearbox under C-WTVC (China worldwide transient vehicle cycle) are built. The control strategies are designed based on engine and motor performance.
2017-10-08
Technical Paper
2017-01-2196
Giuseppe Cicalese, Fabio Berni, Stefano Fontanesi, Alessandro D'Adamo, Enrico Andreoli
Abstract High power-density Diesel engines are characterized by remarkable thermo-mechanical loads. Therefore, compared to spark ignition engines, designers are forced to increase component strength in order to avoid failures. 3D-CFD simulations represent a powerful tool for the evaluation of the engine thermal field and may be used by designers, along with FE analyses, to ensure thermo-mechanical reliability. The present work aims at providing an integrated in-cylinder/CHT methodology for the estimation of a Diesel engine thermal field. On one hand, in-cylinder simulations are fundamental to evaluate not only the integral amount of heat transfer to the combustion chamber walls, but also its point-wise distribution. To this specific aim, an improved heat transfer model based on a modified thermal wall function is adopted to estimate correctly wall heat fluxes due to combustion.
2017-10-08
Technical Paper
2017-01-2218
Roman Varbanets, Sergey Karianskyi, Sergey Rudenko, Igor V. Gritsuk, Aleksey Yeryganov, Olena Kyrylash, Nadezhda Aleksandrovskaya
Abstract Operability and efficiency of transport diesel engines significantly depend on periodical diagnosis of its technical condition. The article considers the features of monitoring and diagnostic of transport diesel engines with the help of vibroacoustic analysis of high pressure fuel equipment and gas distribution mechanism. Functional scheme of diagnostic system and analytical method of TDC determination is described. Article gives an example of four-stroke and two-stroke diesel engines diagnosis. Also the article shows turbocharger speed determination and diagnosis with the help of vibroacoustic spectrum analysis. The main feature of the given methods is their high efficiency for diagnosis of transport diesel engines during operation.
2017-10-08
Technical Paper
2017-01-2290
Zhixin Sun, Shaoqing Yang, Xinyong Qiao, Zhiyuan Zhang
Abstract When operating at high elevation of 3700m (atmospheric pressure about 68 kPa), the combustion process of diesel engine deteriorates, and the engine performance declines significantly. In this paper, Isooctyl Nitrate(EHN) is blended into the diesel fuel as additive to improve the combustion process. The decomposition of Isooctyl Nitrate(EHN) is analyzed and its mechanism is studied through chemical kinetics. A series of tests were carried out on a single cylinder diesel engine to study the effects of EHN on diesel engine combustion with the low intake pressure of 68kPa. Results show that the generation of OH、 H、 HO2 and H2O2 in n-heptane cleavage reactions can be promoted by EHN. In both stages of low and high temperature, the decomposition of n-heptane is accelerated, which shortened the ignition delay period. Four kinds of fuel are studied by tests: diesel fuel, diesel fuel with 0.3%, 0.6% and 0.9% mass fraction EHN respectively.
2017-10-08
Technical Paper
2017-01-2302
Tobias Knorsch, Dmitrii Mamaikin, Philippe Leick, Philipp Rogler, Jin Wang, Zhilong Li, Michael Wensing
Abstract The fuel spray behavior in the near nozzle region of a gasoline injector is challenging to predict due to existing pressure gradients and turbulences of the internal flow and in-nozzle cavitation. Therefore, statistical parameters for spray characterization through experiments must be considered. The characterization of spray velocity fields in the near-nozzle region is of particular importance as the velocity information is crucial in understanding the hydrodynamic processes which take place further downstream during fuel atomization and mixture formation. This knowledge is needed in order to optimize injector nozzles for future requirements. In this study, the results of three experimental approaches for determination of spray velocity in the near-nozzle region are presented. Two different injector nozzle types were measured through high-speed shadowgraph imaging, Laser Doppler Anemometry (LDA) and X-ray imaging.
2017-10-08
Technical Paper
2017-01-2306
Xiaochuan Sun, Xiang Li, Zhong Huang, Dehao Ju, Xing-cai Lu, Dong Han, Zhen Huang
Abstract Recently, the shortage of fossil resources contributes to strict regulations of environmental protection. The research on the high efficiency and low emission of engines becomes an important direction all over the world. Technologies like high injection pressure, high levels of supercharging and higher levels of back pressure have come into application. Increasing the injection pressure and average cylinder pressure results in that parts of the spray can experience transcritical and supercritical regimes. In this paper, we established a surrogate fuel composed of n-Hexadecane, HMN and 1-Metylnaphthalene, to analyze the injection and atomization of diesel surrogate fuel with large eddy simulation (LES) in a cubic calculation region with high temperature and high pressure environment.
2017-10-08
Technical Paper
2017-01-2403
Yanzhao An, R Vallinayagam, S Vedharaj, Jean-Baptiste Masurier, Alaaeldin Dawood, Mohammad Izadi Najafabadi, Bart Somers, Bengt Johansson
Abstract In-cylinder visualization, combustion stratification, and engine-out particulate matter (PM) emissions were investigated in an optical engine fueled with Haltermann straight-run naphtha fuel and corresponding surrogate fuel. The combustion mode was transited from homogeneous charge compression ignition (HCCI) to conventional compression ignition (CI) via partially premixed combustion (PPC). Single injection strategy with the change of start of injection (SOI) from early to late injections was employed. The high-speed color camera was used to capture the in-cylinder combustion images. The combustion stratification was analyzed based on the natural luminosity of the combustion images. The regulated emission of unburned hydrocarbon (UHC), carbon monoxide (CO) and nitrogen oxides (NOX) were measured to evaluate the combustion efficiency together with the in-cylinder rate of heat release.
2017-10-08
Technical Paper
2017-01-2455
Vikram Chopra
Abstract This paper reports on the design of a synchronizer brake based on permanent magnets, capable of braking with an active zero-slip load. Eddy-current brakes are widely used in automation and transportation applications; however, their use is limited by the rotor speed. For low-speed and high-torque applications, designs based on permanent magnets are better suited. Zero-slip braking torque is increased by the use of permanent magnets but, consequently, so is the cogging torque. At first, the synchronizer brake was designed with 16 surface magnets on the rotor. However, in order to reduce the permanent magnet mass, the rotor was re-designed with half the number of surface magnets. This novel design helped lower cogging torque and fabrication costs. Simulation of the design, using the 3D transient with motion solver in commercial finite element software, showed promising results.
2017-10-08
Technical Paper
2017-01-2432
Xiangwang Li, Weimin Wang, Xiongcai Zou, Zhiming Zhang, Wenlong Zhang, Shemin Zhang, Tao Chen, Yuhuang Cao, Yuanda Chen
Abstract In order to reduce emissions, size and manufacturing cost, integrated exhaust manifold become popular in gasoline engine, especially in three-cylinder engine. Moreover, due to shorter length, lighter weight, and less component connections, the exhaust manifold and hot end durability will improve apparently. In this work, an advanced cylinder head with integrated exhaust manifold is adopted in a three-cylinder turbo engine. Because of this integration characteristic, the gas retain in cylinder head longer and the temperature reach higher level than normal cylinder head, which will cause thermal fatigue failure more easily. To validate the exhaust manifold and hot end durability, series simulation and test validation work have been done. Firstly, overall steady state and transient temperature simulation was done for global model. For turbocharger, in order to simulate the outlet turbulent flow and 3d rotation, a code was compiled to define this 3d rotation.
2017-10-08
Technical Paper
2017-01-2252
Weihua Sun, Wei Du, Xuefei Dai, Xiangdong Bai, Zhiping Wu
Abstract The acquisition of more authentic cylinder pressure data is the basis of engine combustion analysis. Due to the multiple advantages, quartz piezoelectric pressure transducers are generally applied to the measurement of the cylinder pressure. However, these transducers can only produce dynamic cylinder pressure data which may be significantly different from the actual values. Thus, the cylinder pressure data need to be corrected through a certain method, while different cylinder pressure correction methods will cause result divergences of the combustion analysis. This paper aims to acquire a proper cylinder pressure correction method by carrying out theoretical analysis based on the polytropic process in the compression stroke as well as the experimental research of the cylinder pressure of a turbocharged eight-cylinder diesel engine.
2017-10-08
Journal Article
2017-01-2293
Jim Barker, Jacqueline Reid, Sarah Angel Smith, Colin Snape, David Scurr, Graham Langley, Krina Patel, Anastarsia Carter, Cris Lapthorn, Frank Pullen
Abstract Studies of diesel system deposits continue to be the subject of interest and publications worldwide. The introduction of high pressure common rail systems resulting in high fuel temperatures in the system with the concomitant use of fuels of varying solubilizing ability (e.g. ULSD and FAME blends) have seen deposits formed at the tip of the injector and on various internal injector components. Though deposit control additives (DCAs) have been successfully deployed to mitigate the deposit formation, work is still required to understand the nature and composition of these deposits. The study of both tip and internal diesel injector deposits (IDID) has seen the development of a number of bench techniques in an attempt to mimic field injector deposits in the laboratory. One of the most used of these is the Jet Fuel Thermal Oxidation Tester or JFTOT (ASTM D3241).
2017-10-08
Journal Article
2017-01-2446
Pengchuan Wang, Nikolaos Katopodes, Yuji Fujii
Abstract Wet clutch packs are the key component for gear shifting in the step-ratio automatic transmission system. The clutch plates are coupled or de-coupled to alter gear ratios based on the driver’s actions and vehicle operating conditions. The frictional interfaces between clutch plates are lubricated with automatic transmission fluid (ATF) for both thermal and friction management. In a 10-speed transmission, there may be as many as 6 clutch packs. Under typical driving conditions, 2 to 3 clutch packs are open, shearing ATF and contributing to energy loss. There is an opportunity to improve fuel economy by reducing the associated viscous drag. An important factor that directly affects clutch drag is the clearance between rotating plates. The axial position of clutch plates changes continuously during operation. It is known in practice that not only the total clearance, but also its distribution between the plates affects the viscous drag.
2017-10-05
Journal Article
2017-01-9288
Stefania Falfari, Gian Marco Bianchi, Giacomo Micci, Augusto Della Torre, Gianluca Montenegro, Angelo Onorati, Sergio Negro
Abstract Metallic open-cell foams have proven to be valuable for many engineering applications. Their success is mainly related to mechanical strength, low density, high specific surface, good thermal exchange, low flow resistance and sound absorption properties. The present work aims to investigate three principal aspects of real foams: the geometrical characterization, the flow regime characterization, the effects of the pore size and the porosity on the pressure drop. The first aspect is very important, since the geometrical properties depend on other parameters, such as porosity, cell/pore size and specific surface. A statistical evaluation of the cell size of a foam sample is necessary to define both its geometrical characteristics and the flow pattern at a given input velocity. To this purpose, a procedure which statistically computes the number of cells and pores with a given size has been implemented in order to obtain the diameter distribution.
2017-09-23
Technical Paper
2017-01-1982
Xiaoming Lan, Hui Chen, Xiaolin He, Jiachen Chen, Yosuke Nishimura, Kazuya Ando, Kei Kitahara
Abstract In the recent years, the interaction between human driver and Advanced Driver Assistance System (ADAS) has gradually aroused people’s concern. As a result, the concept of personalized ADAS is being put forward. As an important system of ADAS, Lane Keeping Assistance System (LKAS) also attracts great attention. To achieve personalized LKAS, driver lane keeping characteristic (DLKC) indices which could distinguish different driver lane keeping behavior should be researched. However, there are few researches on DLKC indices for personalized LKAS. Although there are many researches on modeling driver steering behavior, these researches are not sufficient to obtain DLKC indices. One reason is that most of researches are for double lane change behavior which is different from driver lane keeping behavior.
2017-09-22
Technical Paper
2017-01-7003
Mengzuo Han, Xin Gao, Tie Wang, Zhiwei Zhang
Hydraulic retarder, as an auxiliary braking device, is widely used in commercial vehicles. Nowadays, the hydraulic retarder’s internal oil is mainly cooled by the coolant circuit directly. It not only aggravates the load of engine cooling system, but also makes the abundant heat energy not be recycled properly. In this study, an independent energy supply device with organic Rankine cycles is applied to solve the problems above. In the structure of this energy supply device, the evaporator’s inlet and outlet is connected in parallel with the oil outlet and inlet of the retarder respectively. A part of oil enters the evaporator to transfer heat with the organic fluid, and the rest of oil enters the oil-water heat exchanger to be cooled by the coolant circuit. According to the different braking conditions of the retarder, the oil temperature in the inlet of the hydraulic retarder can be kept within the proper range through adjusting the oil flow rate into the evaporator properly.
2017-09-19
Technical Paper
2017-01-2136
Almuddin Rustum Sayyad, Pratik Salunke, Sangram Jadhav
Abstract The objective of this work is to optimize the operating parameters of the Direct Injection Single Cylinder (5.2 kw) CI engine with respect to Brake Thermal Efficiency (BTE), Hydrocarbons (HC) and Carbon dioxide (CO2). For this investigation, we used Simarouba Biodiesel as an alternate fuel for diesel fuel which possesses low cetane number which is not sufficient to operate existing diesel engine. However, this could be combined with the diesel fuel in the form of blends. For this investigation four levels and four parameters were selected viz. Injection Pressure (IP), Fuel Fraction (FF), Compression Ratio (CR) and Injection Timing (Before TDC). Taguchi Method is used for minimizing the number of experiments and Multiple Regression Analysis is used to find the optimum condition. Three outputs variables such as; Brake Thermal Efficiency (BTE), content of HC particles and CO2 in the emission are measured and considered its influence on CI Engine performance.
2017-09-19
Technical Paper
2017-01-2137
Dnyaneshwar V. Kadam, Sangram D. Jadhav
Abstract Vibration is the most considerable factor in dynamics of machinery. Vibration causes an adverse effect on engine components and may reduce the life of the engine. The conventional fossil fuel sources are limited in the world. The dependency on diesel should be reduced by using biodiesel as an alternative fuel in next few years. The input parameters are affected on engine performance and emission. The present study mainly focuses on an optimization of vibrations, performance and emission using Taguchi and multiple regression analysis for biodiesel as a fuel. The test was performed on a single cylinder, four-stroke, diesel engine with VCR. Taguchi method is used to prepare the design of experiment of the L16 array to minimize the number of experiments and multiple regression analysis used for finding the best relationship between the input and output parameters. The selected input parameters are- fuel fraction, compression ratio, injection pressure and injection timing.
2017-09-19
Technical Paper
2017-01-2021
Numair Mazgaonkar, Andrew Stankovich
Abstract For large aerospace assemblies in finite element (FE) analysis problems, contact interaction between the surrounding bodies has to be established to simulate the load transferred between the components, like aircraft engine carrying bracket assemblies, spigots assemblies etc., and understand the effects of interaction between respective parts. In some cases, depending upon geometry of the assembly, the region of study may not be contact area but the stresses acting within the parts themselves. If there is no geometric or material non-linearity in such problems, a new contact formulation method known as Fast Contact can be used in these contact regions. In this method, contact non-linearity could be introduced to simulate the problem but friction between the contacting parts should not be present. Currently, there is a scope for applying this method for solving FE problems in the aerospace and rail industry.
2017-09-19
Journal Article
2017-01-2036
William Schley
Abstract Of all aircraft power and thermal loads, flight controls can be the most challenging to quantify because they are highly variable. Unlike constant or impulsive loads, actuator power demands more closely resemble random processes. Some inherent nonlinearities complicate this even further. Actuation power consumption and waste heat generation are both sensitive to input history. But control activity varies considerably with mission segment, turbulence and vehicle state. Flight control is a major power consumer at times, so quantifying power demand and waste heat is important for sizing power and thermal management system components. However, many designers sidestep the stochastic aspects of the problem initially, leading to overly conservative system sizing. The overdesign becomes apparent only after detailed flight simulations become available. These considerations are particularly relevant in trade studies comparing electric versus hydraulic actuation.
2017-09-19
Technical Paper
2017-01-2029
Thibaut BILLARD, Cedric Abadie, Bouazza Taghia
Abstract The present paper reports non-electrically intrusive partial discharge investigations on aeronautic and electric vehicle motors fed by SiC inverter drive under variable environmental conditions. A representative test procedure and experimental set-up based on operating aeronautic conditions are essential to ensure the accuracy and reliability of partial discharge test on aircraft systems to make informed decisions on insulation system design choice. The aim of this paper is to demonstrate the feasibility of partial discharge test of the insulation system on a different type of motor under such conditions, both electrically and environmentally. To do so, the paper will start by detailing the innovative experimental set-up to be used in the study. It mainly consists in a high-voltage (1000V) inverter drive using SiC components to provide fast rise time surges.
2017-09-19
Technical Paper
2017-01-2052
K Friedman, G Mattos, K Bui, J Hutchinson, A Jafri, J Paver PhD
Abstract Aircraft seating systems are evaluated utilizing a variety of impact conditions and selected injury measures. Injury measures like the Head Injury Criterion (HIC) are evaluated under standardized conditions using anthropomorphic dummies such as those outlined in 14 CFR part 25. An example test involves decelerating one or more rows of seats and allowing a lap-belted dummy to impact components in front of it, which typically include the seatback and its integrated features. Examples of head contact surfaces include video monitors, a wide range of seat back materials, and airbags. The HIC, and other injury measures such as Nij, can be calculated during such impacts. A minimum test pulse, with minimum allowable acceleration vs time boundaries, is defined as part of the regulations for a frontal impact. In this study the effects of variations in decelerations that meet the requirements are considered.
2017-09-19
Technical Paper
2017-01-2125
Mohammad Barkat, Vivek Karan, Pradeep N
Abstract The exponential increase in the number of aircrafts and air travelers has triggered new innovations which aim to make airline services more reliable and consumer friendly. Quick and efficient maintenance actions with minimum downtime are the need of the hour. Areas that have a large potential for improvement in this regard are the real time use of diagnostic data, filtering/elimination of nuisance faults and machine learning capabilities with respect to maintenance actions. Although, numerous LRUs installed on the aircraft generate massive amounts of diagnostic data to detect any possible issue or LRU failure, it is seldom used in real time. The turnaround time for LRU maintenance can be greatly reduced if the results of the diagnostics conducted during LRU normal operation is relayed to ground stations in real-time. This enables the maintenance engineers to plan ahead and initiate maintenance actions well before the aircraft lands and becomes available for maintenance.
2017-09-19
Technical Paper
2017-01-2124
Violet Leavers
Abstract Within the aviation industry analysis of wear debris particles recovered from magnetic plugs and lubricating fluids is an essential condition monitoring tool. However, in large organisations, high staff turnover in remote work environments often leaves dangerous gaps in on-site support and background knowledge. The current work develops interactive software for wear debris particle classification, root cause diagnosis and serviceability prognostics. During the research several hundred wear debris particle images were collected, analysed and classified by a number of experts. At each stage of the analysis the experts were questioned about the knowledge and experience used to make their diagnoses and prognoses. The end result is an extensive knowledge base representing the combined expertise of a number of highly trained engineers, each with decades of hands-on experience.
2017-09-19
Technical Paper
2017-01-2044
Mithilesh Kumar Sahu, Tushar Choudhary, Sanjay Y
Abstract Aircraft engines powering propulsion of the aircraft is the key component of the system. In aircraft industry it is desirable that an aircraft engines should supply high speeds (for military fighters) with low maintenance (for civil airplanes). In this regard an integration of gas turbine engines with traditional propeller has been introduced and termed as turboprop engine. In present work, a gas turbine with cooled blading has been proposed to be the turboprop engine which has been exergoeconomically analyzed to assess the performance and economics related to the proposed turboprop engine. Exergo-economic analysis is a tool which combines thermodynamic analysis and economic principles to provide information that is helpful to predict thermodynamic performance and total cost of the engine (thermal system). The methodology includes energy, exergy and cost balance equations for component-wise modelling of whole system.
2017-09-19
Technical Paper
2017-01-2060
Joseph Dygert, Patrick Browning, Magdalena Krasny
Abstract The dielectric barrier discharge (DBD) has seen significantly increased levels of interest for its applications to various aerodynamic problems. The DBD produces stable atmospheric-pressure non-thermal plasma with highly energetic electrons and a variety of ions and neutral species. The resulting plasma often degrades the dielectric barrier between the electrodes of the device, ultimately leading to actuator failure. Several researchers have studied a variety of parameters related to degradation and time-dependent dielectric breakdown of various polymers such as PMMA or PVC that are often used in actuator construction. Many of these studies compare the degradation of these materials to that of borosilicate glass in which it is claimed that there is no observable degradation to the glass. Recent research at West Virginia University has shown that certain actuator operating conditions can lead to degradation of a glass barrier and can ultimately result in failure.
2017-09-19
Technical Paper
2017-01-2051
Vasanth Thanigaivelu, Samir Choksi
Abstract Testability measures the extent to which a system or unit supports fault detection and fault isolation in a confident, timely and cost-effective manner. The incorporation of adequate testability, including Built-In Test (BIT), requires early and systematic management attention to testability requirements, design and measurement. Whilst the design of BIT has become a standard design practice for a complex control system, the process to measure the effectiveness of such circuitry (both hardware and software) remains qualitative. The Built-In Test Effectivity Analysis (BEA) tries to quantify such analysis at each phase; identifying requirement gaps that help design safer products. The BEA modifies standard reliability programme to use Failure Modes and Effects and Criticality Analysis (FMECA), and reliability prediction of each functional group to generate a measure of how thoroughly the system can check itself.
2017-09-19
Technical Paper
2017-01-2064
Parvez Alam M, Dinesh Manoharan, Satheesh Chandramohan, Sabarish Chakkath, Sunil MAURYA
Abstract In the present market, multiple sophisticate and expensive Thrust Test Rigs for Brushless Motors (BLDC Motor) are available making it impossible to conduct such thrust analysis on a regular and cost effective basis. Moreover the present test rigs are incapable to measure high Thrust values. This needs specialized thrust testing rig which is more expensive. This paper aims at Design & Development of the Small Scale Test Rig Setup for measurement of the thrust of any Brushless DC motor and helps in refining the Selection of motor and propeller. This is a set up based on cost efficiency factor to implement such rigs, test and for comparing the static thrust produced by the BLDC motor. The fairly simple construction contains a weighing machine, a Tachometer and a Wattmeter to measure the Thrust, RPM and the Current Drawn respectively, and provide comprehensive, accurate and efficient data coming from the BLDC Motor including the Propeller and Electronic Speed Control (ESC).
2017-09-19
Technical Paper
2017-01-2062
Tushar Choudhary, Mithilesh Sahu, Shreya KRISHNA
Abstract Gas turbine technology has traditionally been used by the aviation industry for powering the aircraft including acting as APU. Operational unmanned aerial vehicle (UAV) has a gas turbine which is used as Auxiliary Power Unit (APU) which generically have overall efficiency not exceeding 35% which limits the range in terms of time in the air for the same APU fuel carried onboard. Gas turbine exhaust heat energy is largely wasted and there is scope of its utilization by thermally coupling it with a solid-oxide fuel cell (SOFC). By coupling SOFC with the gas turbine (GT) based power system, a hybrid SOFC-GT based APU system has been proposed for thermodynamic analysis, and the thermal efficiency of the proposed system can be enhanced by 77%. This paper focuses on a thermodynamic cycle analysis of an internal reformed solid oxide fuel cell which is integrated with the gas turbine to form a hybrid APU system for an UAV.
2017-09-19
Technical Paper
2017-01-2072
Yilian Zhang, Qingzhen Bi, Nuodi Huang, Long Yu, Yuhan Wang
Abstract Interference-fit riveting is a critical fastening technique in the field of aerospace assembly. The fatigue and sealing performance of the rivet joint are determined by the interference-fit level of the rivet joint. As a result, it is of great importance to measure the interference-fit level accurately and effectively. Conventional interference-fit level measurement methods can be divided into direct measurement (destructive test on test-piece) and indirect measurement (off-line dimensional measurement of upset rivet head). Both methods cannot be utilized in automatic riveting. In this paper, an on-line non-destructive measurement method is developed to measure the interference-fit level. By taking full advantage of servo-driving riveting integrated with force measurement, the force-deformation data of the deformed rivet can be obtained in real time. The recognized feature points from the force-deformation data can reflect the height of the upset rivet head.
Viewing 1 to 30 of 8144