Criteria

Text:
Display:

Results

Viewing 1 to 30 of 1061
2017-10-08
Technical Paper
2017-01-2222
ZhenYang Liu, Xihui Wang
Abstract The ever increasing popularity of electric vehicles and higher requirement on safety and comfort has led heat pump air conditioning system indispensable in electric vehicle. Many studies have shown that the addition of nano particles contributes to great improvement on thermal conductivity than that of conventional refrigerants. Therefore, the application of the magnetic nanorefrigerant in heat pump air conditioning system has massive potential to heighten the heat transfer efficiency. This paper aims at studying the magnetic nanorefrigerant comprised of the magnetic nano powder Fe3O4 and refrigerant R134a. According to the relevant theoretical analyses and empirical formula, the heat transfer coefficient, density, viscosity, and other physical parameters are calculated approximately.
2017-06-05
Technical Paper
2017-01-1887
Antoine Minard, Christophe Lambourg, Patrick Boussard, Olivier Cheriaux
Abstract While electric and hybrid vehicles are becoming increasingly common, the issue of engine noise is becoming less important, because it does not dominate the overall noise perceived in the passenger compartment in such vehicles anymore. However, at the same time, other sound sources such as air conditioning, start to emerge, which can also cause annoyance. The CEVAS project, involving VALEO, CETIM, University of Technology of Compiègne, ESI GROUP and GENESIS, deals with the acoustic simulation and perception of automotive air-conditioning (HVAC) and electric battery cooling (BTM) systems. While the other partners focused their work on the aeroacoustic characterization, modeling and simulation, GENESIS’ part in the project is dedicated to HVAC sound synthesis and perception. In order to do the synthesis of the acoustic spectra provided by the partners of the project, an additive model was used.
2017-03-28
Technical Paper
2017-01-0448
Prakash T. Thawani, Stephen Sinadinos, John Zvonek
Abstract With the advent of EVs/HEVs and implementation of Idle-Stop-Start (ISS) technologies on internal combustion engine (ICE) driven cars/trucks to improve fuel economy and reduce pollution, refrigerant sub-system (RSS) induced noise phenomena like, hissing, gurgling and tones become readily audible and can result in customer complaints and concerns. One of the key components that induce these noise phenomena is the Thermostatic Expansion Valve (TXV). The TXV throttles compressed liquid refrigerant through the evaporator that results in air-conditioning (A/C) or thermal system comfort for occupants and dehumidification for safety, when needed. Under certain operating conditions, the flow of gas and/or liquid/gas refrigerant at high pressure and velocity excites audible acoustical and structural modes inherent in the tubing/evaporator/HVAC case. These modes may often get masked and sometimes enhanced by the engine harmonics and blower noise.
2017-03-28
Technical Paper
2017-01-1444
Mitali Chakrabarti, Alfredo Perez Montiel, Israel Corrilo, Jing He, Angelo Patti, James Gebbie, Loren Lohmeyer, Bernd Dienhart, Klaus Schuermanns
CO2 is an alternative to replace the conventional refrigerant (R134a) for the air-conditioning system, due to the high Global Warming Potential (GWP) of R134a. There are concerns with the use of CO2 as a refrigerant due to health risks associated with exposure to CO2, if the concentration of CO2 is over the acceptable threshold. For applications with CO2 as the refrigerant, the risk of CO2 exposure is increased due to the possibility of CO2 leakage into the cabin through the duct system; this CO2 is in addition to the CO2 generated from the respiration of the occupants. The initiation of the leak could be due to a crash event or a malfunction of the refrigerant system. In an automobile, where the interior cabin is a closed volume (with minimal venting), the increase in concentration can be detrimental to the customer but is hard to detect.
2017-03-28
Technical Paper
2017-01-0163
Gursaran D. Mathur
The author has developed a model that can be used to predict build-up of cabin carbon dioxide levels for automobiles based on many variables. There are a number of parameters including number of occupants that dictates generation of CO2 within the control volume, cabin leakage (infiltration or exfiltration) characteristics, cabin volume, blower position or airflow rate; vehicle age, etc. Details of the analysis is presented in the paper. Finally, the developed model has been validated with experimental data. The simulated data follows the same trend and matches fairly well with the experimental data.
2017-03-28
Technical Paper
2017-01-0161
Dandong Wang, Cichong Liu, Jiangping Chen
Abstract This study investigates the cycle performance and potential advantages of the replacement of fin-and-tube evaporator with parallel flow micro-channel evaporator, in R134a roof-top bus air conditioner (AC) system. The heat exchangers for bus AC system are featured by a stringent space height limitation. The configuration of inclined four piece or six piece micro-channel evaporators was proposed to satisfy this space requirement, instead of original two piece fin-and-tube evaporators. Additionally, the individual superheat control method with thermostatic expansive valve (TXV) in each evaporator was adopted to improve refrigerant distribution. Three kinds of micro-channel evaporators were designed and equipped in an 8-m roof-top bus AC system. Except the replacement of evaporators, TXV and connecting pipes, other cycle components were kept same.
2017-03-28
Technical Paper
2017-01-0181
Benny Johnson William, Agathaman Selvaraj, Manjeet Singh Rammurthy, Manikandan Rajaraman, V. Srinivasa Chandra
Abstract The modern day automobile customers’ expectations are sky-high. The automotive manufacturers need to provide sophisticated, cost-effective comfort to stay in this competitive world. Air conditioning is one of the major features which provides a better comfort but also adds up to the increase in operating fuel cost of vehicle. According to the sources the efficiency of internal combustion engine is 30% and 70% of energy is wasted to atmosphere. The current Air conditioners in automobiles use Vapour compression system (VCS) which utilizes a portion of shaft power of the engine at its input; this in turn reduces the brake power output and increases the specific fuel consumption (SFC) of the engine. With the current depletion rate of fossil fuels, it is necessary to conserve the available resources and use it effectively which also contributes to maintain a good balance in greenhouse effect thus protecting the environment.
2017-03-28
Technical Paper
2017-01-0162
Jun Li, Lili Feng, Pega Hrnjak
Abstract This paper presents the results of an experimental study to determine the effect of vapor-liquid refrigerant separation in a microchannel condenser of a MAC system. R134a is used as the working fluid. A condenser with separation and a baseline condenser identical on the air side have been tested to evaluate the difference in the performance due to separation. Two categories of experiments have been conducted: the heat exchanger-level test and the system-level test. In the heat exchanger-level test it is found that the separation condenser condenses from 1.6% to 7.4% more mass flow than the baseline at the same inlet and outlet temperature (enthalpy); the separation condenser condenses the same mass flow to a lower temperature than the baseline condenser does. In the system-level test, COP is compared under the same superheat, subcooling and refrigerating capacity. Separation condenser shows up to 6.6% a higher COP than the baseline condenser.
2017-03-28
Technical Paper
2017-01-0171
Quansheng Zhang, Yan Meng, Christopher Greiner, Ciro Soto, William Schwartz, Mark Jennings
Abstract In this paper, the tradeoff relationship between the Air Conditioning (A/C) system performance and vehicle fuel economy for a hybrid electric vehicle during the SC03 drive cycle is presented. First, an A/C system model was integrated into Ford’s HEV simulation environment. Then, a system-level sensitivity study was performed on a stand-alone A/C system simulator, by formulating a static optimization problem which minimizes the total energy use of actuators, and maintains an identical cooling capacity. Afterwards, a vehicle-level sensitivity study was conducted with all controllers incorporated in sensitivity analysis software, under three types of formulations of cooling capacity constraints. Finally, the common observation from both studies, that the compressor speed dominates the cooling capacity and the EDF fan has a marginal influence, is explained using the thermodynamics of a vapor compression cycle.
2017-03-28
Technical Paper
2017-01-0173
Stephen Andersen, Sourav Chowdhury, Timothy Craig, Sangeet Kapoor, Jagvendra Meena, Prasanna Nagarhalli, Melinda Soffer, Lindsey Leitzel, James Baker
Abstract This paper quantifies and compares the cooling performance and refrigerant and fuel cost savings to automobile manufacturers and owners of secondary-loop mobile air conditioners (SL-MACs) using refrigerants hydrofluorocarbon (HFC)-134a and the available alternatives HFC-152a and HFO-1234yf. HFC-152a and HFO-1234yf are approved for use by the United States Environmental Protection Agency (US EPA) and satisfy the requirements of the European Union (EU) F-Gas Regulations. HFC-152a is inherently more energy efficient than HFC-134a and HFO-1234yf and in SL-MAC systems can generate cooling during deceleration, prolong comfort during idle stop (stop/start), and allow powered cooling at times when the engine can supply additional power with the lowest incremental fuel use. SL-MAC systems can also reduce the refrigerant charge, emissions, and service costs of HFO-1234yf.
2017-03-28
Technical Paper
2017-01-0168
B. Vasanth, Muthukumar Arunachalam, Sathya Narayana, S. Sathish Kumar, Murali govindarajalu
In current scenario, there is an increasing need to have faster product development and achieve the optimum design quickly. In an automobile air conditioning system, the main function of HVAC third row floor duct is to get the sufficient airflow from the rear heating ventilating and air-conditioning (HVAC) system and to provide the sufficient airflow within the leg locations of passenger. Apart from airflow and temperature, fatigue strength of the duct is one of the important factors that need to be considered while designing and optimizing the duct. The challenging task is to package the duct below the carpet within the constrained space and the duct should withstand the load applied by the passenger leg and the luggage. Finite element analysis (FEA) has been used extensively to validate the stress and deformation of the duct under different loading conditions applied over the duct system.
2017-03-28
Technical Paper
2017-01-0164
Venkatesan Muthusamy, S. Sathish Kumar, Saravanan Sambandan
Abstract In an automotive air-conditioning (AC) system, upfront prediction of the cabin cool down rate in the initial design stage will help in reducing the overall product development (PD) time. Vehicle having higher seating capacity will have higher thermal load and providing thermal comfort to all passengers uniformly is a challenging task for the automotive HVAC (Heating Ventilation and Air conditioning) industry. Dual HVAC unit is generally used to provide uniform cooling to a large cabin volume. One dimensional (1D) simulation is being extensively used to predict the HVAC performance during the initial stage of PD. The refrigerant loop with components such as compressor, condenser, TXV and evaporator was modeled. The complicated vehicle cabin including the glazing surfaces and enclosures were modeled as a three row duct system using 1D tool AMESim®. The material type, density, specific heat capacity and thermal conductivity of the material were specified.
2017-03-28
Technical Paper
2017-01-0166
Noori Pandit
Abstract The effects of substituting a 12 mm thick subcool on top condenser in place of a 16 mm subcool on bottom condenser are evaluated in a vehicle level AC pull down test. The A to B testing shows that a thinner condenser with subcool on top exhibits no degradation in AC performance while resulting in a lower total system refrigerant charge. The results are from vehicle level tests run in a climatically controlled vehicle level wind tunnel to simulate an AC pull down at 43°C ambient. In addition to cabin temperature and AC vent temperatures, comparison of compressor head pressures was also done. The conclusion of the study was that a standard 16 mm thick subcool on bottom IRD condenser can be replaced by a 12 mm thick subcool on top IRD condenser with no negative effects on performance.
2017-03-28
Technical Paper
2017-01-0169
Ward J. Atkinson, William Raymond Hill, Gursaran D. Mathur
Abstract The EPA has issued regulations in the Final Rulemaking for 2017-2025 Light-Duty Vehicle Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards (420r12901-3). This document provides credits against the fuel economy regulations for various Air Conditioning technologies. One of these credits is associated with increased use of recirculation air mode, when the ambient is over 24°C (75°F.). The authors want to communicate the experiences in their careers that highlighted issues with air quality in the interior of the vehicle cabin. Cabin contamination sources may result in safety and health issues for both younger and older drivers. Alertness concerns may hinder their ability to operate a vehicle safely.
2017-03-28
Journal Article
2017-01-0120
Yoichiro Kawamoto, Gota Ogata, Zhiwei Shan
Abstract This study reports on a new generation ECS (Ejector Cycle System) which includes a highly efficient ejector and a novel system configuration. The ejector is working as a fluid jet pump that recovers expansion energy which is wasted in the conventional refrigeration cycle decompression process, and converts the recovered expansion energy into pressure energy and raises the compressor suction pressure. Consequently, the ejector system can reduce power consumption of the compressor by using the above mentioned pressure-rising effect and improve energy efficiency of the refrigeration cycle. The ejector consists of a nozzle, a suction section, a mixing section and a diffuser. The objective of this study is to improve actual fuel economy of all vehicles by ejector technology. The previous generation ECS was reported in 2012 SAE World Congress1. Now, a new generation ECS has been successfully developed and released in the market for Mobile Air Conditioning systems as of 2013.
2017-01-10
Technical Paper
2017-26-0262
Neelakandan Kandasamy, Koundinya Narasimha Kota, Prasad Joshi
Abstract The structure of a vehicle is capable of absorbing a significant amount of heat when exposed to hot climate conditions. 50-70% of this heat penetrates through the glazing and raises both the internal cabin air temperature and the interior trim surface temperature. When driving away, the air conditioning system has to be capable of removing this heat in a timely manner, such that the occupant’s time to comfort will be achieved in an acceptable period [1]. When we reduce the amount of heat absorbed, the discomfort in the cabin can be reduced. A 1D/3D based integrated computational methodology is developed to evaluate the impact of vehicle orientation on cabin climate control system performance and human comfort in this paper. Additionally, effects of glazing material and blinds opening/closing are analyzed to access the occupant thermal comfort during initial and final time AC pull down test.
2017-01-10
Technical Paper
2017-26-0370
G. Meenakshi, Nishit Jain, Sandeep Mandal
Abstract Automobile industry is shifting its focus from conventional fuel vehicles to NexGen vehicles. The NexGen vehicles have electrical components to propel the vehicle apart from mechanical system. These vehicles have a goal of achieving better fuel efficiency along with reduced emissions making it customer as well as environment friendly. Idle start-stop is a key feature of NexGen vehicles, where, the Engine ECU switches to engine stop mode while idling to cut the fuel consumption and increase fuel efficiency. Engine restarts when there is an input from driver to run the vehicle. There is always a clash between the Engine ECU and automatic climate control unit (Auto-AC) either to enter idle stop mode for better fuel efficiency or inhibit idle stop mode to keep the compressor running for driver comfort. This clash can be resolved in two ways: 1 Hardware change and,2 Software change Hardware change leads to increase in cost, validation effort and time.
2017-01-10
Technical Paper
2017-26-0087
Prasad B Warule, Vaibhav V Jadhav
Abstract Hybridization of vehicle drive train is an important step to increase energy security, reduce crude oil import, improvement of air quality and GHG reduction. Heavy traffic congestion poses a great challenge in improvement of fuel economy. Nowadays urban climatic condition forces the passenger to keep air-conditioning (AC) on; thus further decreasing the fuel economy. In a typical urban drive; the vehicle commutes with low speed forcing IC Engine to run in its low efficiency operational points. Further it is characterized by frequent start-stop and crawling. It has been observed that the power consumption for AC is comparable to that required for the vehicle propulsion. Hence the AC on condition with propelling vehicle demands higher power from engine creating a challenge for fuel economy improvement.
2017-01-10
Technical Paper
2017-26-0150
Abhijeet Chothave, Yashwant Mohite, Vinay Poal, Phaneendra Pamarthi
Abstract In present day passenger cars, Mobile Air Conditioning (MAC) system is one of the essential features due to rise in overall ambient temperatures and comfort expectation of customers. During the development of MAC system, the focus is on cooling capacity of system for maintaining in-cabin temperatures. However, parameters like solar radiation, air velocities at occupant, relative humidity, metabolic rate and clothing of occupants also influence occupant’s thermal comfort and normally not considered in design of the MAC system. Subjective method is used to evaluate thermal comfort inside vehicle cabin which depends mainly on human psychology. To better understand the effect and minimize the human psychological factors a large sample of people are required. That process of evaluating the comfort inside the vehicle cabin is not only time consuming but also impractical.
2017-01-10
Technical Paper
2017-26-0180
Swaminathan Ramaswamy, Christophe Schorsch, Mario Kolar
Abstract Automotive OEMs are adapting various “green” technologies to meet the upcoming and anticipated regulations for reducing direct and indirect GHG emissions equivalent to CO2. Using compact devices and lightweight components on the aggregates, OEMs get the benefit of carbon credits towards their contribution in reducing CO2 emissions. With regards to the HVAC systems, enhancements such as ultra-low permeation hose assemblies and adoption of low GWP refrigerant have shown promising results in reducing the direct GHG emissions by controlling refrigerant permeation & indirect GHG emissions by using compact and high efficiency compressors, compact heat exchangers, and other technologies that contribute to weight reduction and ultimately impact CO2 emissions. Traditional AC lines are routed/installed in space that accommodates the relative movement between the engine and chassis by connecting the various parts.
2016-10-25
Technical Paper
2016-36-0351
Ricardo Gonçalves, Reinaldo dos Santos
Abstract Increasingly, the auto industry has been challenged to meet its financial needs to remain competitive. Customer comfort needs in regard to the Vehicle Interior Noise levels are also remarkable. The application of fixed displacement air conditioning compressors and low cost exhaust system in vehicles to meet the programs cost targets generated a series of notorious and undesirable effects to the customer. The noise perception of the compressor coupling during its operation cycle is one of them. This happens in some specific situations and varies with weather and engine operating conditions. The vehicle used in this study presented a boom noise coming from the exhaust tailpipe during the AC compressor coupling phase. This noise was attenuated to satisfactory levels in regard to consumer perception with only a change in engine calibration strategy.
2016-05-18
Journal Article
2016-01-9110
Jignesh Vaghela
Abstract This study involves the experimental aspects of R134a Automobile Air Conditioning (AAC) system with & without Liquid Suction Heat Exchanger (LSHX). To evaluate the performance of an Automobile Air Conditioning system, an experimental system consisting of original components from an R134a Automobile Air Conditioning system has been set up and instrumented. An additional Liquid Suction Heat Exchanger is used in conventional Automobile Air Conditioning system. Effect of evaporator temperature variation & compressor speed variation on R134a Automobile Air Conditioning system performance is evaluated. From experimental evaluation, it is derived that there is a Coefficient of Performance (COP) improvement in Automobile Air Conditioning system with Liquid Suction Heat Exchanger compared to Automobile Air Conditioning system without Liquid Suction Heat Exchanger. Performance of an R134a Automobile Air Conditioning system degrades with increase in compressor speed.
2016-04-05
Journal Article
2016-01-0191
Gursaran D. Mathur
Water drainage characteristics of an evaporator changes with the age of the vehicle. This is due to the fact that with time, a part of the hydrophilic coating washes off with the moisture that condenses over the evaporator core from the air-stream. Hence, the effectiveness of the evaporator for water drainage deteriorates with the age of the vehicle. At this condition more water is retained in the evaporator as the contact angle increases. Author has conducted experiments with evaporators from multiple vehicles from different OEMs. These evaporators were analyzed to determine the effectiveness of the hydrophilic coating as a function of time or vehicle age. This is the first paper in the open literature that deals with the vehicle mileage or vehicle age with the evaporator plate contact angle and surface coating of an evaporator.
2016-04-05
Technical Paper
2016-01-0181
Yasuki Hirota, Ryuichi Iwata, Takafumi Yamauchi, Manabu Orihashi, Masaki Morita
Abstract In order to reduce the energy consumption of the automotive air conditioning system, adsorption heat pump (AHP) system is one of the key technologies. We have been developing compact AHP system utilizing the exhaust heat from the engine coolant system (80-100 °C), which can meet the requirements in the automotive application. However, AHP systems have not been practically used in automotive applications because of its low volumetric power density of the adsorber. The volumetric power density of the adsorber is proportional to sorption rate, packing density and latent heat. In general, the sorption rate is determined by mass transfer resistance in primary particle of an adsorbent and heat and mass transfer resistance in packed bed. In order to improve the volumetric power density of the adsorber, it is necessary to increase the production of the sorption rate and the packing density.
2016-04-05
Technical Paper
2016-01-1295
Atsushi Itoh, ZongGuang Wang, Toshikazu Nosaka, Keita Wada
Abstract Without engine noise, the cabin of an electric vehicle is quiet, but on the other hand, it becomes easy to perceive refrigerant-induced noise in the automotive air-conditioning (A/C) system. When determining the A/C system at the design stage, it is crucial to verify whether refrigerant-induced noise occurs in the system or not before the real A/C systems are made. If refrigerant-induced noise almost never occurs during the design stage, it is difficult to evaluate by vehicle testing at the development stage. This paper presents a 1D modeling methodology for the assessment of refrigerant-induced noise such as self-excitation noise generated by pressure pulsation through the thermal expansion valve (TXV). The GT-SUITE commercial code was used to develop a refrigerant cycle model consisting of a compressor, condenser, evaporator, TXV and the connecting pipe network.
2016-04-05
Technical Paper
2016-01-0221
Roberto Monforte, Fabrizio Mattiello, Andrea Perosino, Fabrizio Porta, Susanna Paz, Pablo Lopez del Rincón
Abstract The adoption of a low-GWP refrigerant gas in MAC systems is mandatory from January 1st, 2017 according to the European Directive 2006/40/EC requirements for all new passenger cars, in order to gain their registration in the EU28 market. Following the work carried out in 2008 to support the FCA choice for the new types development, a further step was accomplished to evaluate the risk involved by the adoption of the low-GWP refrigerant gas R-1234yf in the MAC systems. This paper is focused on the activities held to enhance the 3D CFD method and its validation. In certain concentrations, R-1234yf could present a safety hazard to the vehicle occupants and, according to the ISO Standard Risk Scenario evaluation, 3D CFD tools are adopted to evaluate the ignition event associated with small or large leak in the passenger compartment. The method validation has been supported by both a simplified control volume “dummy cabin compartment” and an actual FCA vehicle.
2016-04-05
Technical Paper
2016-01-0253
Jun Li, Predrag Hrnjak
Abstract This paper presents the experimental analysis of separation in vertical headers based on flow visualization. Two-phase separation phenomena inside the header is observed and quantified. Driving forces are analyzed to study the mechanisms for two-phase flow motion and flow regimes. Main tube of the header is made of clear PVC for visualization study. R-134a is used as the fluid of interest and the mass flux from the inlet pass is 55 kg/m2s - 195 kg/m2s. Potential ways to improve two-phase separation are discussed. A model is built to show how separation brings potential benefits to MAC heat exchangers by arranging the flow path.
2016-04-05
Technical Paper
2016-01-0247
Jiu Xu, Predrag Hrnjak
Abstract Automotive air conditioning compressor produces an annular-mist flow consisting of gas-phase refrigerant flow with oil film and oil droplets. This paper reports a method to calculate the oil retention and oil circulation ratio based on oil film thickness, wave speed, oil droplet size, oil droplet speed, and mass flow rate. Oil flow parameters are measured by high-speed camera capture and video processing in a non-invasive way. The estimated oil retention and oil circulation ratio results are compared quantitatively with the measurements from system experiments under different compressor outlet gas superficial velocity. The agreement between video result and sampling measurement shows that this method can be applied in other annular-mist flow analysis. It is also shown that most of the oil exists in film from the mass point of view while oil droplets contributes more to the oil mass flow rate because they travel in a much higher speed.
2016-04-05
Technical Paper
2016-01-0218
Balashunmuganathan Vasanth, Kumar Sathish, Mayur Sah
In an automotive air conditioning, aero-acoustic noise originating from HVAC (Heating Ventilation and Air Conditioning) unit is one of the major concerns for the customer satisfaction. “Fan blower excessive noise” is one among the top issues for all automotive manufacturers. In this paper, a 3D computational analysis is carried out for a passenger car HVAC unit to predict the noise originated from the HVAC unit. HVAC modeling is done using uni graphics and ANSA and the analysis is carried out using the commercial CFD software STAR CCM+. The inputs for the analysis are the airflow at HVAC Inlet, blower speed and the pressure drop characteristics of evaporator, filter and heater core. The computational model is done by considering the blower region as MRF (Moving Reference Frame) and the air flow is considered incompressible. DES (Detached Eddy Simulation) model is used to resolve the eddies generated by the turbulent flow.
2016-04-05
Technical Paper
2016-01-0254
Gursaran D. Mathur
Field tests were conducted on a late full sized sedan with the HVAC unit operating in both Recirculation and OSA modes to monitor build-up of the CO2 concentration inside the cabin and its influence on occupant’s fatigue and alertness. These tests were conducted during 2015 summer on interstate highways with test durations ranging from 4 to 7 hours. During the above tests, fatigue or tiredness of the occupants (including CO2 levels) was monitored and recorded at 30 min intervals. Based on this investigation it is determined that the measured cabin concentration levels reaches ASHRAE (Standard 62-1999) specified magnitudes (greater than 700 ppm over ambient levels) with three occupants in the vehicle. Further, the occupants did show fatigue when the HVAC unit was operated in recirculation mode in excess of 5 hours. Further details have been presented in the paper.
Viewing 1 to 30 of 1061

Filter