Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 3156
2017-06-05
Technical Paper
2017-01-1783
Chris Todter, Olivier Robin, Paul Bremner, Christophe Marchetto, Alain Berry
Abstract Surface pressure measurements using microphone arrays are still challenging, especially in an automotive context with cruising speeds around Mach 0.1. The separated turbulent boundary layer excitation and the side mirror wake flow generate both acoustic and aerodynamic components, which have wavenumbers that differ by a factor of approximately 10. This calls for high spatial resolution measurements to fully resolve the wavenumber-frequency spectrum. In a previous publication [1], the authors reported a micro-electro-mechanical (MEMS) surface microphone array that successfully used wavenumber analysis to quantify acoustic versus turbulence loading. It was shown that the measured surface pressure at each microphone could be strongly influenced by self-noise induced by the microphone “packaging”, which can be attenuated with a suitable windscreen.
2017-06-05
Journal Article
2017-01-1786
Hiroshi Yokoyama, Ryo Adachi, Taiki Minato, Akiyoshi Iida
Abstract The objective of this paper is to clarify the mechanism for the reduction of cavity tone with blowing jets aligned in the spanwise direction in the upstream boundary layer. Also, the effects of spacing of the jets on the reduction are focused. To achieve these objectives, direct aeroacoustic simulations were conducted along with wind tunnel experiments. The depth-to-length ratio of cavity was D/L = 0.5. The incoming boundary layer was laminar, where the boundary layer thickness was δ/L = 0.055. The predicted flow fields without control show that two-dimensional large-scale vortices are shed and become acoustic sources in the cavity. The effects of spanwise spacing of spanwise-aligned jets on the cavity flow and tone were clarified with computations and experiments with the different pitches of s/L = 0.1 - 1.0 (s/δ = 1.8-18.2). As a result, the largest reduction level was obtained for s/L = 0.5.
2017-06-05
Journal Article
2017-01-1825
Takenori Miyamoto, Hiroshi Yokoyama, Akiyoshi Iida
Abstract Intense aeroacoustic feedback noises may radiate from flow around an airfoil, rearview mirror with small gaps and so on. Reductions of these noises are important issues in the development of industrial application. The intense noise from a bonnet of the automobile is one of the typical problems of acoustic feedback noise. In order to reduce this noise, plasma actuator (PA) was utilized to control flow and acoustic fields. The aim of this investigation is to clarify the effects of flow control by the PA on noise reduction and the noise reduction mechanism. Wind tunnel experiments were conducted with a half scale bonnet model and a low noise wind tunnel. Simultaneous measurements of flow and noise fields were conducted to understand the generation mechanism of the bonnet noise. Coherent output power (COP) of the velocity fluctuations with reference to far-field sound pressure was measured to visualize noise source distribution.
2017-04-11
Journal Article
2017-01-9450
Ali Reza Taherkhani, Carl Gilkeson PhD, Philip Gaskell PhD, Rob Hewson PhD, Vassili Toropov PhD, Amin Rezaienia PhD, Harvey Thompson
Abstract This paper investigates the optimization of the aerodynamic design of a police car, BMW 5-series which is popular police force across the UK. A Bezier curve fitting approach is proposed as a tool to improve the existing design of the warning light cluster in order to reduce drag. A formal optimization technique based on Computational Fluid Dynamics (CFD) and moving least squares (MLS) is used to determine the control points for the approximated curve to cover the light-bar and streamline the shape of the roof. The results clearly show that improving the aerodynamic design of the roofs will offer an important opportunity for reducing the fuel consumption and emissions for police vehicles. The optimized police car has 30% less drag than the non-optimized counter-part.
2017-03-28
Technical Paper
2017-01-1533
Kathleen DeMarco, James Stratton, Kevin Chinavare, Garry VanHouten
Abstract The introduction of Worldwide harmonized Light vehicles Test Procedures (WLTP) in Europe and increased Corporate Average Fuel Economy (CAFE) standards in the United States for fuel economy and emissions reductions are going to have a larger role in vehicle development. Two major ways to increase fuel economy and reduce emissions are by reducing mass and improving aerodynamics. In the wheel segment, these two possible means to improve fuel economy compete against each other. Most lightweight wheel designs are detrimental to aerodynamics and aerodynamic wheels are seen as unstylish and with a high mass penalty. One solution is through the use of composite wheel technology which replaces non-structural aluminum with lighter weight materials. This study used SAE J2263 and SAE J2264 procedures to establish baseline fuel economy numbers and to evaluate various mass, inertial and aerodynamic differences between wheel concepts.
2017-03-28
Technical Paper
2017-01-1529
Nicholas Simmonds, John Pitman, Panagiotis Tsoutsanis, Karl Jenkins, Adrian Gaylard, Wilko Jansen
Abstract Cooling drag, typically known as the difference in drag coefficient between open and closed cooling configurations, has traditionally proven to be a difficult flow phenomenon to predict using computational fluid dynamics. It was seen as an academic yardstick before the advent of grille shutter systems. However, their introduction has increased the need to accurately predict the drag of a vehicle in a variety of different cooling configurations during vehicle development. This currently represents one of the greatest predictive challenges to the automotive industry due to being the net effect of many flow field changes around the vehicle. A comprehensive study is presented in the paper to discuss the notion of defining cooling drag as a number and to explore its effect on three automotive models with different cooling drag deltas using the commercial CFD solvers; STARCCM+ and Exa PowerFLOW.
2017-03-28
Technical Paper
2017-01-1524
Robert Lietz, Levon Larson, Peter Bachant, John Goldstein, Rafael Silveira, Mehrdad Shademan, Pete Ireland, Kyle Mooney
Abstract The number of computational fluid dynamics (CFD) simulations performed during the vehicle aerodynamic development process continues to expand at a rapid rate. One key contributor to this trend is the number of analytically based designed experiments performed to support vehicle aerodynamic shape development. A second contributor is the number of aerodynamic optimization studies performed for vehicle exterior components such as mirrors, underbody shields, spoilers, etc. A third contributor is the increasing number of “what if” exploratory studies performed early in the design process when the design is relatively fluid. Licensing costs for commercial CFD solutions can become a significant constraint as the number of simulations expands.
2017-03-28
Technical Paper
2017-01-1592
Jingdong Cai, Saurabh Kapoor, Tushita Sikder, Yuping He
Abstract In this research, active aerodynamic wings are investigated using numerical simulation in order to improve vehicle handling performance under emergency scenarios, such as tight cornering maneuvers at high speeds. Air foils are selected and analyzed to determine the basic geometric features of aerodynamic wings. Built upon the airfoil analysis, the 3-D aerodynamic wing model is developed. Then, the virtual aerodynamic wings are assembled with the 3-D vehicle model. The resulting 3-D geometry model is used for aerodynamic analysis based on numerical simulation using a computational fluid dynamics (CFD) software package. The CFD-based simulation data and the vehicle dynamic model generated are combined to study the effects of active aerodynamic wings on handling performance of high-speed vehicles. The systematic numerical simulation method and achieved results may provide design guidance for the development of active aerodynamic wings for high-speed road vehicles.
2017-03-28
Technical Paper
2017-01-1551
Charlie Lew, Nath Gopalaswamy, Richard Shock, Bradley Duncan, James Hoch
Abstract The aerodynamics of a rotating tire can contribute up to a third of the overall aerodynamic force on the vehicle. The flow around a rotating tire is very complex and is often affected by smallest tire features. Accurate prediction of vehicle aerodynamics therefore requires modeling of tire rotation including all geometry details. Increased simulation accuracy is motivated by the needs emanating from stricter new regulations. For example, the upcoming Worldwide harmonized Light vehicles Test Procedures (WLTP) will place more emphasis on vehicle performance at higher speeds. The reason for this is to bring the certified vehicle characteristics closer to the real-world performance. In addition, WLTP will require reporting of CO2 emissions for all vehicle derivatives, including all possible wheel and tire variants. Since the number of possible derivatives can run into the hundreds for most models, their evaluation in wind tunnels might not be practically possible.
2017-03-28
Technical Paper
2017-01-1538
Jiaye Gan, Longxian Li, Gecheng Zha, Craig Czlapinski
Abstract This paper conducts numerical simulation and wind tunnel testing to demonstrate the passive flow control jet boat tail (JBT) drag reduction technique for a heavy duty truck rear view mirror. The JBT passive flow control technique is to introduce a flow jet by opening an inlet in the front of a bluff body, accelerate the jet via a converging duct and eject the jet at an angle toward the center of the base surface. The high speed jet flow entrains the free stream flow to energize the base flow, increase the base pressure, reduces the wake size, and thus reduce the drag. A baseline heavy duty truck rear view mirror is used as reference. The mirror is then redesigned to include the JBT feature without violating any of the variable mirror position geometric constraints and internal control system volume requirement. The wind tunnel testing was conducted at various flow speed and yaw angles.
2017-03-28
Technical Paper
2017-01-1537
Ananya Bhardwaj
Abstract Improving brake cooling has commanded substantial research in the automotive sector, as safety remains paramount in vehicles of which brakes are a crucial component. To prevent problems like brake fade and brake judder, heat dissipation should be maximized from the brakes to limit increasing temperatures. This research is a CFD investigation into the impact of existing wheel center designs on brake cooling through increased cross flow through the wheel. The new study brings together the complete wheel and disc geometries in a single CFD study and directly measures the effect on brake cooling, by implementing more accurately modeled boundary conditions like moving ground to replicate real conditions correctly. It also quantifies the improvement in the cooling rate of the brake disc with a change in wheel design, unlike previous studies.
2017-03-28
Technical Paper
2017-01-1540
Yuri M. Lopes, Maxwell R. Taylor, Todd H. Lounsberry, Gregory J. Fadler
Abstract Typical production vehicle development includes road testing of a vehicle towing a trailer to evaluate powertrain thermal performance. In order to correlate tests with simulations, the aerodynamic effects of pulling a trailer behind a vehicle must be estimated. During real world operation a vehicle often encounters cross winds. Therefore, the effects of cross winds on the drag of a vehicle–trailer combination should be taken into account. Improving the accuracy of aerodynamic load prediction for a vehicle-trailer combination should in turn lead to improved simulations and better thermal performance. In order to best simulate conditions for real world trailer towing, a study was performed using reduced scale models of a Sport Utility Vehicle (SUV) and a Pickup Truck (PT) towing a medium size cargo trailer. The scale model vehicle and trailer combinations were tested in a full scale wind tunnel.
2017-03-28
Technical Paper
2017-01-1358
Hyunbin Park
Abstract This paper presents a novel rear-view side mirror constructed with an external lens and a planar mirror to improve aerodynamics and minimize the blind spot of drivers. To resolve the drawback of the conventional side mirror, some vehicle manufacturers have lately attempted to develop a camera-based solution to replace traditional protruding side mirrors. However, driving vehicles on public roads without such side mirrors is illegal in most countries including the USA. The United States Federal Motor Vehicle Safety Standards (FMVSS) specifies that the mirror installed on the driver side should be flat and should have unit magnification. The proposed system avoids the large, protruding, external side-mirror that is currently used in present-day vehicles. Instead, it integrates this external element into the interior of the vehicle to improve aerodynamic resistance, safety, and styling.
2017-03-28
Technical Paper
2017-01-1427
Daniel Koch, Gray Beauchamp, David Pentecost
Abstract Tire disablement events can cause a drag force that slows a vehicle. In this study, the magnitude of the deceleration was measured for different phases of 29 high speed tire tread separation and air loss tests. These deceleration rates can assist in reconstructing the speed of a vehicle involved in an accident following a tire disablement.
2017-03-28
Technical Paper
2017-01-1515
Neil Lewington, Lauri Ohra-aho, Olav Lange, Klaus Rudnik
Abstract Industry trends towards lighter, more aerodynamically efficient road vehicles have the potential to degrade a vehicle’s response to crosswinds. In this paper, a methodology is outlined that indirectly couples a computational fluid dynamics (CFD) simulation of the vehicle’s aerodynamic characteristics with a multi-body dynamics simulation (MBD) to determine yaw, roll and pitch response characteristics during a severe crosswind event. This one-way coupling approach mimics physical test conditions outlined in open loop test procedure ISO 12021:2010 that forms part of the vehicle sign-off criterion at Ford Motor Company. The methodology uses an overset mesh CFD method to drive the vehicle through a prescribed crosswind event, providing unfiltered predictions of vehicle force and moment responses that are used as applied forces in the MBD model. The method does not account for changes in vehicle attitude due to applied aerodynamic forces and moments.
2017-03-28
Technical Paper
2017-01-1514
Renan F. Soares, Kevin P. Garry, Jennifer Holt
Abstract The flow field and body aerodynamic loads on the DrivAer reference model have been extensively investigated since its introduction in 2012. However, there is a relative lack of information relating to the models wake development resulting from the different rear-body configurations, particularly in the far-field. Given current interest in the aerodynamic interaction between two or more vehicles, the results from a preliminary CFD study are presented to address the development of the wake from the Fastback, Notchback, and Estateback DrivAer configurations. The primary focus is on the differences in the far-field wake and simulations are assessed in the range up to three vehicle lengths downstream, at Reynolds and Mach numbers of 5.2×106 and 0.13, respectively. Wake development is modelled using the results from a Reynolds-Averaged Navier-Stokes (RANS) simulation within a computational mesh having nominally 1.0×107 cells.
2017-03-28
Technical Paper
2017-01-1504
Peter Tkacik, Zachary Carpenter, Aaron Gholston, Benjamin James Cobb, Sam Kennedy, Ethan Blankenship, Mesbah Uddin, Surya Phani Krishna Nukala
Abstract Wind tunnel aerodynamic testing involving rolling road tire conditions can be expensive and complex to set up. Low cost rolling road testing can be implemented in a 0.3m2 Eiffel wind tunnel by modifying a horizontal belt sander to function as a moving road. This sander is equipped with steel supports to hold a steel plate against the bottom of the wind tunnel to stabilize the entire test section. These supports are bolted directly into the sander frame to ensure minimal vibrational losses or errors during testing. The wind tunnel design at the beginning of the project was encased in a wooden box which was removed to allow easier access to the test section for installation of the rolling road assembly. The tunnel was also modified to allow observers to view the testing process from various angles.
2017-03-28
Technical Paper
2017-01-1230
Cyrille Goldstein, Joel Hetrick
Abstract Mechanical losses in electric machines can contribute significantly to overall system losses in an electric drive [1]. With a permanent magnet synchronous machine (PMSM), measuring mechanical losses is difficult without an un-magnetized rotor. Even with an un-magnetized rotor, physical testing can be time consuming and expensive. This paper presents a simple theoretical model of mechanical drag in an electric machine. The model was built using calculations for bearing, seal, and windage drag and was compared to experimental results from testing with un-magnetized motors. Based on this information, the model was modified to better represent the physical system. The goal of this work is to understand the contributors to mechanical drag, to be able to estimate mechanical losses without physical testing, and to be able to quickly evaluate design choices that could reduce mechanical losses.
2017-03-28
Journal Article
2017-01-0441
Zhenyu Wang, Mei Zhuang
Abstract A numerical study on sunroof noise reduction is carried out. One of the strategies to suppress the noise is to break down the strong vortices impinging upon the trailing edge of the sunroof into smaller eddies. In the current study, a serrated sunroof trailing edge with sinusoidal profiles of wavelengths is investigated for the buffeting noise reduction. A number of combinations of wavelengths and amplitudes of sinusoidal profiles is employed to examine the effects of trailing edge serrations on the noise reduction. A generic vehicle model is used in the study and a straight trailing edge is considered as a baseline. The results indicate that the trailing edge serration has a significant impact on the sound pressure level (SPL) in the vehicle cabin and it can reduce the SPL by up to 10~15 dB for the buffeting frequency.
2017-03-28
Journal Article
2017-01-1523
Robert Maduta, Suad Jakirlic
Abstract The present work is concerned with the Steady RANS (Reynolds-Averaged Navier-Stokes) computations of inherently unsteady separating flow configurations. The focus is on the flow past the well-known Ahmed body (Ahmed et al., 1984), the rear slant angle of which corresponds to 25°. Unlike all (near-wall) RANS models, independent of modelling level, predicting a massive flow detachment occupying the entire slanted region, the present RANS model reproduces correctly the mean flow topology characterized by a thin separation bubble reattaching already at the slanted surface. It is achieved by intensifying appropriately the turbulence activity at the region of boundary layer separation by introducing an correspondingly formulated sink term (PΔU) into the relevant scale-supplying equation. The latter negative production term is modelled in terms of the second derivative of the mean velocity field (ΔU), as proposed originally by Rotta (1972).
2017-03-28
Journal Article
2017-01-1527
Felix Wittmeier
Abstract After being in operation since 1989, the 25% / 20% model scale wind tunnel of University of Stuttgart received its second major upgrade in 2016. In a first upgrade in 2001, a rolling road with a 5 belt system from MTS was installed. This system includes a steel center belt to simulate the road underneath the vehicle and four FKFS designed rubber belts for wheel rotation. The recent upgrade now enables the wind tunnel to be used not only for standard, steady state aerodynamic measurements but also for measurements of unsteady aerodynamic effects. This enables the use of the FKFS swing system as a standard measurement technique. Therefore, the former balance was replaced by a balance manufactured by AND with a high Eigenfrequency and the ability to sample the measurement data at up to 1000 Hz. The second large part of the upgrade was the replacement of the control system. With the new Wind Tunnel Control System (WCTS), control system.
2017-03-28
Journal Article
2017-01-1525
Kosuke Nakasato, Makoto Tsubokura, Jun Ikeda, Keiji Onishi, Shoya Ota, Hiroki Takase, Kei Akasaka, Hisashi Ihara, Munehiko Oshima, Toshihiro Araki
Abstract Because of rising demands to improve aerodynamic performance owing to its impact on vehicle dynamics, efforts were previously made to reduce aerodynamic lift and yawing moment based on steady-state measurements of aerodynamic forces. In recent years, increased research on dynamic aerodynamics has partially explained the impact of aerodynamic forces on vehicle dynamics. However, it is difficult to measure aerodynamic forces while a vehicle is in motion, and also analyzing the effect on vehicle dynamics requires measurement of vehicle behavior, amount of steering and other quantities noiselessly, as well as an explanation of the mutual influence with aerodynamic forces. Consequently, the related phenomena occurring in the real world are still not fully understood.
2017-03-28
Journal Article
2017-01-1536
Jeff Howell, David Forbes, Martin Passmore, Gary Page
Abstract In the wind tunnel the effect of a wind input on the aerodynamic characteristics of any road vehicle is simulated by yawing the vehicle. This represents a wind input where the wind velocity is constant with height above the ground. In reality the natural wind is a boundary layer flow and is sheared so that the wind velocity will vary with height. A CFD simulation has been conducted to compare the aerodynamic characteristics of a DrivAer model, in fastback and squareback form, subject to a crosswind flow, with and without shear. The yaw simulation has been carried out at a yaw angle of 10° and with one shear flow exponent. It is shown that the car experiences almost identical forces and moments in the two cases when the mass flow in the crosswind over the height of the car is similar. Load distributions are presented for the two cases. The implications for wind averaged drag are discussed.
2017-03-28
Journal Article
2017-01-1535
Luca Dalessio, Bradley Duncan, Chinwei Chang, Joaquin Ivan Gargoloff, Ed Tate
Abstract The ultimate goal for vehicle aerodynamicists is to develop vehicles that perform well on the road under real-world conditions. One of the most important metrics to evaluate vehicle performance is the drag coefficient. However, vehicle development today is performed mostly under controlled settings using wind tunnels and computational fluid dynamics (CFD) with artificially uniform upstream conditions, neglecting real-world effects due to road turbulence from wind and other vehicles. Thus, the drag coefficients computed with these methods might not be representative of the real performance of the car on the road. This might ultimately lead engineers to develop design solutions and aerodynamic devices which, while performing well in idealized conditions, do not perform well on the road. For this reason, it is important to assess the vehicle’s drag as seen in real-world environments. An effort in this direction is represented by using the wind-averaged drag.
2017-03-28
Journal Article
2017-01-1516
Daniel B. Honeycutt, Mesbah Uddin
Abstract Although, the implementation of lift-off prevention devices such as the NASCAR roof flaps have greatly reduced the frequency and severity of race vehicle aerodynamic lift-off incidents, airborne incidents still occur occasionally in motorsports. The effectiveness of existing lift-off prevention measures and future trends in lift-off prevention are addressed in this paper. The results and analysis presented in this paper will be of paramount interest to race vehicle designers and sanctioning bodies because the effects of aerodynamics on vehicle lift-off need to be comprehended, but there exists a scarcity of reliable data in this area.
2017-03-28
Journal Article
2017-01-1513
Young-Chang Cho, Chin-Wei Chang, Andrea Shestopalov, Edward Tate
Abstract The airflow into the engine bay of a passenger car is used for cooling down essential components of the vehicle, such as powertrain, air-conditioning compressor, intake charge air, batteries, and brake systems, before it returns back to the external flow. When the intake ram pressure becomes high enough to supply surplus cooling air flow, this flow can be actively regulated by using arrays of grille shutters, namely active grille shutters (AGS), in order to reduce the drag penalty due to excessive cooling. In this study, the operation of AGS for a generic SUV-type model vehicle is optimized for improved fuel economy on a highway drive cycle (part of SFTP-US06) by using surrogate models. Both vehicle aerodynamic power consumption and under-hood cooling performance are assessed by using PowerFLOW, a high-fidelity flow solver that is fully coupled with powertrain heat exchanger models.
2017-03-28
Journal Article
2017-01-1518
Emil Ljungskog, Simone Sebben, Alexander Broniewicz, Christoffer Landström
Abstract Many aerodynamic wind tunnels used for testing of ground vehicles have advanced ground simulation systems to account for the relative motion between the ground and the vehicle. One commonly used approach for ground simulation is a five belt system, where moving belts are used, often in conjunction with distributed suction and tangential blowing that reduces the displacement thickness of the boundary layer along the wind tunnel floor. This paper investigates the effects from aft-belt tangential blowing in the Volvo Cars Aerodynamic wind tunnel. First the uniformity of the boundary layer thickness downstream of the blowing slots is examined in the empty tunnel. This is followed by investigations of how the measured performance of different vehicle types in several configurations, typically tested in routine aerodynamic development work, depends on whether the tangential blowing system is active or not.
2017-03-28
Journal Article
2017-01-1517
Haidong Yuan, Zhigang Yang, Qiliang Li
Abstract External rear view mirror is attached at the side of the vehicle which is to permit clear vision for the driver to the rear of the vehicle. When the vehicle is running, the flow field around external rear view mirror is highly three-dimensional, unsteady, separated and turbulent which is known to be a significant source of aerodynamic noise and a contributor to the total drag force on the vehicle. While among all the researches on the flow field around external rear view mirror, different installation environment were employed. The external rear view mirror is mounted on a production car in most researches which presents the real condition and it can also be mounted on the ground of a wind tunnel, a specially designed table, or a generic vehicle model based on the SAE model. While, the relationship between the flow field around external rear view mirror and the installation environment is not very clear.
2017-03-28
Journal Article
2017-01-1510
Kisun Song, Kyung Hak Choo, Dimitri Mavris
Abstract In early phases of conceptual design stages for developing a new car in the modern automobile industry, the lack of systematic methodology to efficiently converge to an agreement between the aesthetics and aerodynamic performance tremendously increases budget and time. During these procedures, one of the most important tasks is to create geometric information which is versatilely morphable upon the demands of both of stylists and engineers. In this perspective, this paper proposes a Spline-based Modeling Algorithm (SMA) to implement into performing aerodynamic design optimization research based on CFD analysis. Once a 3-perspective schematic of a car is given, SMA regresses the backbone boundary lines by using optimum polynomial interpolation methods with the best goodness of fit, eventually reconstructing the 3D shape by linearly interpolating from the extracted boundaries minimizing loss of important geometric features.
2017-03-28
Journal Article
2017-01-1512
Fuliang Wang, Zhangshun Yin, Shi Yan, Jia Zhan, Heinz Friz, Bo Li, Weiliang Xie
Abstract The validation of vehicle aerodynamic simulation results to wind tunnel test results and simulation accuracy improvement attract considerable attention of many automotive manufacturers. In order to improve the simulation accuracy, a simulation model of the ground effects simulation system of the aerodynamic wind tunnel of the Shanghai Automotive Wind Tunnel Center was built. The model includes the scoop, the distributed suction, the tangential blowing, the moving belt and the wheel belts. The simulated boundary layer profile and the pressure distribution agree well with test results. The baseline model and multiple design changes of the new Buick Excelle GT are simulated. The simulation results agree very well with test results.
Viewing 1 to 30 of 3156

Filter

Subtopics