Display:

Results

Viewing 1 to 30 of 3147
2015-04-14
Collection
Active Safety and Driver assistance systems are gaining importance as many passive safety systems have already been found to have yielded significant safety benefits that are possible from the deployment of those systems in the fleet. Similar success will much depend upon how fast these systems proliferate the entire passenger vehicle fleet. It will also depend on the deployment strategies used by the industry and the government as well as consumer acceptance and market demand for these systems. Additionally, opportunities exist to use the information gained from the various onboard sensors and vision systems in active safety systems for improving the effectiveness of today’s passive safety systems such as seat belts, airbags, and post-crash safety systems even further by the integration of active and passive safety systems.
2015-04-14
Technical Paper
2015-01-1410
Shotaro Odate, Kazuhiro Daido, Yosuke Mizutani
Abstract According to the North American National Automotive Sampling System Crashworthiness Data System (NASS/CDS), approximately one-half of all accidents during driving are of the secondary collision pattern in which the collision event involves the occurrence of secondary collision. Accidents involving impact to a stopped vehicle (chain-reaction collisions) have increased to approximately 3% of all accidents in North America, and although the rate of serious injury is low, cases have been reported of accidents in which cervical sprain occurs as an after-effect[1]. In order to mitigate these circumstances, research has been conducted on systems of automatic braking for collisions. These systems apply brakes automatically when a first collision has been detected in order to avoid or lessen a second collision. Research on automatic collision braking systems, however, has not examined the multiple collisions parked [1, 2].
2015-04-14
Journal Article
2015-01-1408
Kristofer D. Kusano, Hampton C. Gabler
Abstract Intersection crashes are a frequent and dangerous crash mode in the U.S. Emerging Intersection Advanced Driver Assistance Systems (I-ADAS) aim to assist the driver to mitigate the consequences of vehicle-to-vehicle crashes at intersections. In support of the design and evaluation of such intersection assistance systems, characterization of the road, environment, and drivers associated with intersection crashes is necessary. The objective of this study was to characterize intersection crashes using nationally representative crash databases that contained all severity, serious injury, and fatal crashes. This study utilized four national crash databases: the National Automotive Sampling System, General Estimates System (NASS/GES); the NASS Crashworthiness Data System (CDS); and the Fatality Analysis Reporting System (EARS) and the National Motor Vehicle Crash Causation Survey (NMVCCS).
2015-04-14
Technical Paper
2015-01-1405
Guanjun Zhang, Feng Yu, Zhigao OuYang, Huiqin Chen, Zhonghao Bai, Libo Cao
Abstract The combination of passive and active vehicle safety technologies can effectively improve vehicle safety. Most of them predict vehicle crashes using radar or video, but they can't be applied extensively currently due to the high cost. Another collision forecasting method is more economic which is based on the driver behavior and vehicle status, such as the acceleration, angular velocity of the brake pedal and so on. However, the acceleration and angular velocity of the brake pedal will change with the driver and the vehicle type. In order to study the effect of different drivers and vehicle types on the braking acceleration and angular velocity of the brake pedal, six volunteers were asked to drive five vehicles for simulating the working conditions of emergency braking, normal braking, inching braking and passing barricades under different velocities. All the tests were conducted on asphalt road, and comprehensive experimental design was used to arrange tests.
2015-04-14
Technical Paper
2015-01-0264
Jeya Padmanaban
Abstract This study examined the Consumer Product Safety Commission (CPSC) Death Certificate file to identify frequency and rate of accidental CO poisoning deaths associated with exhaust gases of stationary vehicles in enclosed areas. A comprehensive search was then made to determine whether or not there was an increase in such deaths with the introduction of “smart keys” (available as standard equipment beginning in 2004). For 2000-2011 CY, the CPSC file contained 4,760 death certificate records for ICD-10 code X47 (accidental poisoning by exposure to other gases and vapors). The manual review of narratives for these records covered 2004-2011 and found 1,553 CO poisoning deaths associated with vehicle exhaust, including 748 for enclosed areas. For these 748 incidents, information on victim and location was then identified, and an exhaustive effort was undertaken to determine whether the vehicles involved were equipped with rotary or smart keys.
2015-04-14
Journal Article
2015-01-0319
Reena Kumari Behera, Jiji Gangadharan, Krishnan Kutty, Smita Nair, Vinay Vaidya
Abstract This paper presents a vision based pedestrian detection system. The presented algorithm is a novel method that accurately segments the pedestrian regions in real time. The fact that the pedestrians are always vertically aligned is taken into consideration. As a result, the edge image is scanned from bottom to top and left to right. Both the color and edge data is combined in order to form the segments. The segmentation is highly dependent on the edge map. Even a single pixel dis-connectivity would lead to incorrect segments. To improve this, a novel edge linking method is performed prior to segmentation. The segmentation would consist of foreground and background segments as well. The background clutter is removed based on certain predefined conditions governed by the camera features. A novel edge based head detection method is proposed for increasing the probability of pedestrian detection. The combination of head and leg pattern will determine the presence of pedestrians.
2015-04-14
Technical Paper
2015-01-1703
John D. Bullough
Abstract Assessing the safety impacts of vehicle forward lighting is a challenge because crash data do not always contain details necessary to ascertain the role, if any, of lighting in crashes. The present paper describes several approaches to evaluating the safety impacts of lighting using naturalistic driving data. Driving behavioral data and descriptive narratives of crashes and near-miss incidents might provide new opportunities to understand how forward lighting improves traffic safety.
2015-04-14
Journal Article
2015-01-1595
Kristoffer Lundahl, Chih Feng Lee, Erik Frisk, Lars Nielsen
Abstract Rollover has for long been a major safety concern for trucks, and will be even more so as automated driving is envisaged to becoming a key element of future mobility. A natural way to address rollover is to extend the capabilities of current active-safety systems with a system that intervenes by steering or braking actuation when there is a risk of rollover. Assessing and predicting the rollover is usually performed using rollover indices calculated either from lateral acceleration or lateral load transfer. Since these indices are evaluated based on different physical observations it is not obvious how they can be compared or how well they reflect rollover events in different situations. In this paper we investigate the implication of the above mentioned rollover indices in different critical maneuvers for a heavy 8×4 twin-steer truck.
2015-04-14
Technical Paper
2015-01-0130
Julio Rodriguez, Ken Rogich, Philip Pidgeon, Kim Alexander, John R. Wagner
Abstract Driving skills and driving experience develop differently between a civilian and a military service member. Since 2000, the Department of Defense reports that two-thirds of non-related to war fatalities among active duty service members were due to transportation-related incidents. In addition, vehicle crashes are the leading non-related to war cause of both fatalities and serious injuries among active duty Marines. A pilot safe driving program for Marines was jointly developed by the Richard Petty Driving Experience and Clemson University Automotive Safety Research Institute. The pilot program includes four modules based on leading causes of vehicle crashes, and uses classroom and behind the wheel components to improve and reinforce safe driving skills and knowledge. The assessment results of this pilot program conducted with 192 Marines in September 2011 at Camp LeJeune, NC are presented and discussed.
2015-04-14
Technical Paper
2015-01-1430
Brian Gilbert, Joseph McCarthy, Ron Jadischke
Abstract The analysis and modeling of vehicle crush in accident reconstruction has traditionally been based upon the use of linear, crush-based, stiffness coefficients. Recent advances have allowed for the calculation and implementation of non-linear crush coefficients in the accident reconstruction software Human-Vehicle-Environment (HVE) by Engineering Dynamics Corporation (EDC). HVE contains the collision algorithm called DyMESH (DYnamic MEchanical SHell), which is capable of using the non-linear coefficients. These non-linear coefficients have shown to increase the accuracy of a predicted crash pulse. Published research on non-linear crush coefficients for the use in HVE has been limited to frontal impacts. Calculating side stiffness coefficients is more complex since most side impact crash tests involve two vehicles that can crush and absorb impact energy.
2015-04-14
Technical Paper
2015-01-1428
Shane Richardson, Andreas Moser, Tia Lange Orton, Roger Zou
Abstract Current techniques that can be used to evaluate and analyse lateral impact speeds of vehicle crashes with poles/trees are based on measuring the deformation crush and using lateral crash stiffness data to estimate the impact speed. However, in some cases the stiffness data is based on broad object side impacts rather than pole impacts. Some have argued that broad object side impact tests can be used for analysing narrow object impacts; however previous authors have identified the fallacy of this premise. Publicly available side pole crash test data is evaluated in terms of crush depth impact speed and impact energy for six general vehicle types. A range of simulated pole impact tests at various speeds and impact angles were conducted using LS-Dyna and PC-Crash. Publicly available Finite Element Vehicle models of a 1996 Ford Taurus, a 1994 Chevrolet C2500 and a 1997 Geo Metro (Suzuki Swift) were used, providing relationships among impact speeds, crush depths and impact angles.
2015-04-14
Journal Article
2015-01-1422
Neal Carter, Nathan A. Rose, David Pentecost
Abstract Several sources report simple equations for calculating the lean angle required for a motorcycle and rider to traverse a curved path at a particular speed. These equations utilize several assumptions that reconstructionists using them should consider. First, they assume that the motorcycle is traveling a steady speed. Second, they assume that the motorcycle and its rider lean to the same lean angle. Finally, they assume that the motorcycle tires have no width, such that the portion of the tires contacting the roadway does not change or move as the motorcycle and rider lean. This study reports physical testing that the authors conducted with motorcycles traversing curved paths to examine the net effect of these assumptions on the accuracy of the basic formulas for motorcycle lean angle. We concluded that the basic lean angle formulas consistently underestimate the lean angle of the motorcycle as it traverses a particular curved path.
2015-04-14
Technical Paper
2015-01-1420
John C. Steiner, John Olsen, Tom Walli, Tyler Kress, Christopher Armstrong, Ralph Gallagher, Stein Husher, John Kyes
Abstract Traditional accident reconstruction analysis methodologies include the study of the crush-energy relationship of vehicles. By analyzing the measured crush from a vehicle involved in a real world accident and comparing it to a test vehicle with a known energy, from a crash test, the real world vehicle's damage energy can be evaluated. In addition, the change-in-velocity (Delta-V) can be calculated. The largest source of publicly available crash tests is from the National Highway Traffic Safety Administration (NHTSA). NHTSA conducts numerous Federal Motor Vehicle Safety Standard (FMVSS) compliance and New Car Assessment Program (NCAP) testing for many passenger vehicles for sale in the United States.
2015-04-14
Technical Paper
2015-01-1418
Shane Richardson, Nikola Josevski, Andreas Sandvik, Tandy Pok, Tia Lange Orton, Blake Winter, Xu Wang
Abstract Pedestrian throw distance can be used to evaluate vehicle impact speed for wrap or forward projection type pedestrian collisions. There have been multiple papers demonstrating relationships between the impact speed of a vehicle and the subsequent pedestrian throw distance. In the majority of instances, the scenarios evaluated focused on the central width of the vehicle impacting the pedestrian. However, based on investigated pedestrian collisions, the location where the pedestrian has engaged with the vehicle can and does significantly influence the throw distance (and projection) and subsequent impact speed analysis. PC-Crash was used to simulate multiple pedestrian impacts at varying speeds and vehicle impact locations, creating pedestrian throw distance impact speed contour plots. This paper presents the pedestrian throw distance impact speed contour plots for a range of nine vehicle types.
2015-04-14
Technical Paper
2015-01-1417
Jeffrey Muttart
Abstract Controlled studies identified several factors that influence drivers' swerving when responding to in an emergency situation. Specifically, driver age, time-to-contact, amplitude of the steering action (steer within lane or swerving into the next lane), distraction, fatigue, natural lighting and available buffer space were identified as factors that influence steering behaviors. The goal of the current research was to identify the extent to which each factor changed swerving performances of drivers who were faced with a crash or near crash. Results from crashes and near crashes were obtained from the InSight (SHRP-2) naturalistic driving study. The results from the controlled studies and the results from the naturalistic driving research were consistent in many ways. Drivers engaged in a visual-manual secondary task were much younger than were the drivers who had no distracting secondary task.
2015-04-14
Technical Paper
2015-01-1416
Clay Coleman, Donald Tandy, Jason Colborn, Nicholas Ault
Abstract In the field of accident reconstruction, a reconstructionist will often inspect a crash scene months or years after a crash has occurred. With this passage of time important evidence is sometimes no longer present at the scene (i.e. the vehicles involved in the crash, debris on the roadway, tire marks, gouges, paint marks, etc.). When a scene has not been totally documented with a survey by MAIT or the investigating officers, the reconstructionist may need to rely on police, fire department, security camera, or witness photographs. These photos can be used to locate missing evidence by employing traditional photogrammetric techniques. However, traditional techniques require planar surfaces, matched discrete points, or camera matching at the scene.
2015-04-14
Technical Paper
2015-01-1415
Yasuhiro Matsui, Shoko Oikawa
Abstract Fatal injuries suffered by cyclists in vehicle-versus-cyclist accidents are investigated to provide information for the introduction of safety countermeasures. We analyzed characteristics of cyclist injuries in real fatal accidents and compared them with severity levels of head injury in impact tests against a road surface. In the accident analyses, we investigated the main body regions whose injuries led to fatalities using a macro vehicle-cyclist accident database of the Institute for Traffic Accident Research and Data Analysis of Japan. Using data from 2009 to 2013, we investigated the frequency of cyclist fatalities by gender, age group, vehicle speed, and the source of fatal head injury (impact with the vehicle or road surface). Results indicated that head injuries are the most common cause of cyclist fatalities in car-cyclist accidents.
2015-04-14
Technical Paper
2015-01-1414
Jitendra Shah, Mohamed Benmimoun
Abstract The focus of this paper is the threat assessment of perceived threat by drivers in collision avoidance situations. The understanding of the decision making process with regards to the initiation of a driver intervention is a crucial step to gain insight into driver's steering and braking behavior in case of an imminent threat (rear-end collision). Hence a study with various test subjects and a test vehicle has been conducted. The study has helped to understand how drivers behave in potential rear-end collision situations arising from the traffic situation (e.g. start of a traffic jam). This information is of major importance for designing autonomous collision avoidance systems and an important step towards autonomous driving. Autonomous driving in vehicles require system interventions to be initiated as early and safely as possible in order to avoid the collision and to avoid unstable vehicle dynamics situations.
2015-04-14
Journal Article
2015-01-1433
R. Matthew Brach, Raymond M. Brach, Richard A. Mink
This paper presents a reconstruction technique in which nonlinear optimization is used in combination with an impact model to quickly and efficiently find a solution to a given set of parameters and conditions to reconstruct a collision. These parameters and conditions correspond to known or prescribed collision information (generally from the physical evidence) and can be incorporated into the optimized collision reconstruction technique in a variety of ways including as a prescribed value, through the use of a constraint, as part of a quality function, or possibly as a combination of these means. This reconstruction technique provides a proper, effective, and efficient means to incorporate data collected by Event Data Recorders (EDR) into a crash reconstruction. The technique is presented in this paper using the Planar Impact Mechanics (PIM) collision model in combination with the Solver utility in Microsoft Excel.
2015-04-14
Technical Paper
2015-01-1435
Jeffrey Wirth, Enrique Bonugli, Mark Freund
Abstract Google Earth is a map and geographical information application created and maintained by Google Corporation. The program displays maps of the Earth using images obtained from available satellite imagery, aerial photography and geographic information systems (GIS) 3D globe. Google Earth has become a tool often used by accident reconstructionists to create site drawings and obtain dimensional information. In some cases, a reconstructionist will not be able to inspect the site of the crash due to various circumstances. For example, a reconstruction may commence after the roadway on which the accident occurred has been modified. In other cases, the time and expense required to physically inspect the incident site is not justifiable. In these instances, a reconstructionist may have to rely on Google Earth imagery for dimensional information about the site. The accuracy of Google Earth is not officially documented.
2015-04-14
Technical Paper
2015-01-1439
Toshiyuki Yanaoka, Yasuhiro Dokko, Yukou Takahashi
Abstract The high frequency of fatal head injuries is one of the important issues in traffic safety, and Traumatic Brain Injuries (TBIs) without skull fracture account for approximately half of them in both occupant and pedestrian crashes. In order to evaluate vehicle safety performance for TBIs in these crashes using anthropomorphic test dummies (ATDs), a comprehensive injury criterion calculated from the rotational rigid motion of the head is required. While many studies have been conducted to investigate such an injury criterion with a focus on diffuse brain injuries in occupant crashes, there have been only a limited number of studies focusing on pedestrian impacts. The objective of this study is to develop a comprehensive injury criterion based on the rotational rigid body motion of the head suitable for both occupant and pedestrian crashes.
2015-04-14
Technical Paper
2015-01-1444
Ada H. Tsoi, John Hinch, H. Gabler
Abstract Event data recorders (EDRs) must survive regulatory frontal and side compliance crash tests if installed within a car or light truck built on or after September 1, 2012. Although previous research has shown that EDR data are surviving these tests, little is known about whether EDRs are capable of surviving collisions of higher delta-v, or crashes involving vehicle fire or immersion. The goal of this study was to determine the survivability of light vehicle EDRs in real world fire, immersion, and high change in velocity (delta-v) cases. The specific objective was to identify the frequency of these extreme events and to determine the EDR data download outcome when subject to damage caused by these events. This study was performed using three crash databases: the Fatality Analysis Reporting System (FARS), the National Automotive Sampling System / Crashworthiness Data System (NASS/CDS), and the National Motor Vehicle Crash Causation Survey (NMVCCS).
2015-04-14
Technical Paper
2015-01-1443
Morteza Seidi, Marzieh Hajiaghamemar, James Ferguson, Vincent Caccese
Abstract Falls in the elderly population is an important concern to individuals and in the healthcare industry. When the head is left unprotected, head impact levels can reach upwards of 500 g (gravitational acceleration), which is a level that can cause serious injury or death. A protective system for a fall injury needs to be designed with specific criteria in mind including energy protection level, thickness, stiffness, and weight among others. The current study quantifies the performance of a protective head gear design for persons prone to falls. The main objective of this paper is to evaluate the injury mitigation of head protection gear made from a patented system of polyurethane honeycomb and dilatant materials. To that end, a twin wire fall system equipped with a drop arm that includes a Hybrid-III head/neck assembly was used. The head was instrumented with an accelerometer array.
2015-04-14
Technical Paper
2015-01-1446
Timothy P. Austin, David P. Plant, Joseph E. LeFevre
Abstract The use of Heavy Vehicle Event Data Recorders (HVEDRs) in collision analysis has been well recognized in past research. Numerous publications have been presented illustrating data accuracy both in normal operating conditions as well as under emergency braking conditions. These data recording devices are generally incorporated into Electronic Control Modules (ECMs) for engines or Electronic Control Units (ECUs) for other vehicular components such as the Anti-Lock Brake System. Other research has looked at after-market recorders, including publically-available Global Positioning System (GPS) devices and fleet management tools such as Qualcomm. In 2009, the National Fire Protection Association (NFPA) incorporated a Vehicle Data Recorder (VDR) component into their Standard for Automotive Fire Apparatus. The purpose of this was to “…capture data that can be used to promote safe driving and riding practices.”
2015-04-14
Technical Paper
2015-01-1447
Hirotoshi Ishikawa, Kunihiro Mashiko, Tetsuyuki Matsuda, Koichi Fujita, Asuka Sugano, Toru Kiuchi, Hirotsugu Tajima, Masaaki Yoshida, Isao Endou
Abstract Event Data Recorders (EDRs) record valuable data in estimating the occupant injury severity after a crash. Advanced Automatic Collision Notification (AACN) with the use of EDR data will determine the potential extent of injuries to those involved in motor vehicle accidents. In order to obtain basic information in injury estimation using EDR data, frontal collisions for 29 vehicles equipped with EDRs were analyzed as a pilot study by retrieving the EDR data from the accident vehicles and collecting the occupant injury data from the database of an insurance company. As a result, the severity of occupant injury was closely related to the Delta V recorded on an EDR. However, there were several cases in which the predicted injury level was overestimated or underestimated by the Delta V. Therefore, caution is required when predicting the level of injury in frontal collisions based upon the Delta V alone.
2015-04-14
Technical Paper
2015-01-1449
Ada H. Tsoi, John Hinch, Michael Winterhalter, H. Gabler
Abstract Event data recorder (EDR) data are currently only required to survive the crash tests specified by Federal Motor Vehicle Safety Standard (FMVSS) 208 and FMVSS 214. Although these crash tests are severe, motor vehicles are also exposed to more severe crashes, fire, and submersion. Little is known about whether current EDR data are capable of surviving these events. The objective of this study was to determine the limits of survivability for EDR data for realistic car crash conditions involving heat, submersion, and static crush. Thirty-one (31) EDRs were assessed in this study: 4 in the pilot tests and 27 in the production tests. The production tests were conducted on model year (MY) 2011-2012 EDRs enclosed in plastic, metal, or a combination of both materials. Each enclosure type was exposed to 9 tests. The high temperature tests were divided into 3 oven testing conditions: 100°C, 150°C, and 200°C.
2015-04-14
Technical Paper
2015-01-1451
Anand Sai Gudlur, Theresa Atkinson
Abstract The current study examined field data in order to document injury rates, injured body regions, and injury sources for persons seated in the second row of passenger vehicles. It was also intended to identify whether these varied with respect to age and restraint use in vehicles manufactured in recent years. Data from the 2007-2012 National Automotive Sampling System (NASS/CDS) was used to describe occupants seated in the second row of vehicles in frontal crashes. Injury plots, comparison of means and logistic regression analysis were used to seek factors associated with increased risk of injury. Restraint use reduced the risk of AIS ≥ 2 injury from approximately 1.8% to 5.8% overall. Seventy nine percent of the occupants in the weighted data set used either a lap and shoulder belt or child restraint system. The most frequently indicated injury source for persons with a MAIS ≥ 2 was “seat, back support”, across restraint conditions and for all but the youngest occupants.
2015-04-14
Technical Paper
2015-01-1458
Jia Hu
Abstract A Finite Element (FE) model for analysis of the rear row occupant injury assessment parameters in a frontal crash test was developed by using the LSTC Hybrid III 5th percentile FE dummy model. Three cases were studied using three different rear seatbelt retractor configurations, which were as follows: an ordinary retractor without load limiter or pretensioner (Case 1), a retractor with load limiter only (Case 2), and a retractor with load limiter and pretensioner (Case 3). The simulation results of each of these three cases were compared respectively to the results obtained from two frontal 50-kph full rigid barrier impact tests and one sled test. It turned out that the dummy kinematics and injury assessment parameters of the head, neck, chest, pelvis and femurs were all similar between test and simulation in the three cases. Thus, FE simulation models can be used to predict dummy injury assessment parameters.
2015-04-14
Technical Paper
2015-01-1460
Massoud Tavakoli, Janet Brelin-Fornari
Abstract This study was conducted to explore the effect of various combinations of seatbelt-related safety components (namely, retractor pretensioners and load limiting retractors) on the adult rear passenger involved in a frontal collision. The study was conducted on a 50th Male and a 5th Female Hybrid III ATD in the rear seat of a mid-sized sedan. Each ATD was seated in an outboard position with 3-point continuous lap-shoulder belts. On these belts were combinations of pretensioners and load limiters. Since the main objective of this test series was to cross-compare the seatbelt configurations, front seats were not included in the buck in order to avoid uncontrollable variables that would have affected the comparison study if the possibility of contact with the front seat were allowed. Nevertheless, there was a short barrier devised to act as a foot-stop for both ATDs.
2015-04-14
Technical Paper
2015-01-1461
Dietmar Otte
Abstract During most pedestrian-vehicle crashes the car front impacts the pedestrian and the whole body wraps around the front shape of the car. This influences the head impact on the vehicle. Meanwhile the windscreen is a major impact point and tested in NCAP conditions. The severity of injuries is influenced by car impact speed; type of vehicle; stiffness and shape of the vehicle; nature of the front (such as the bumper height, bonnet height and length, windscreen frame); age and body height of the pedestrian; and standing position of the pedestrian relative to the vehicle front. The so called Wrap Around Distance WAD is one of the important measurements for the assessment of protection of pedestrians and of bicyclists as well because the kinematic of bicyclists is similar to that of pedestrians. For this study accidents of GIDAS were used to identify the importance of WAD for the resulting head injury severity of pedestrians and bicyclists.
Viewing 1 to 30 of 3147

Filter